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ABSTRACT 

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease 

characterised by selective degeneration and death of motor neurons. The architecture of 

neurons makes them dependent upon the proper transport of protein and organelle 

cargoes, especially through axons (axonal transport). Indeed, disruption to axonal 

transport is a very early, pathological event in ALS. A proline to serine substitution at 

position 56 in the vesicle-associated membrane protein-associated protein B (VAPB; 

VAPBP56S) causes some dominantly inherited familial forms of motor neuron disease 

including ALS type-8. How VAPBP56S causes ALS is not properly understood. In this 

thesis, I investigated the effect of VAPBP56S on axonal transport of mitochondria in 

primary rat cortical neurons and primary mouse motor neurons. Using time-lapse 

microscopy, I showed that expression of VAPBP56S but not wild-type VAPB in 

neurons selectively disrupts anterograde axonal transport of mitochondria. Anterograde 

axonal transport of mitochondria is mediated by the microtubule-based molecular motor 

kinesin-1. Attachment of kinesin-1 to mitochondria involves the outer mitochondrial 

membrane protein Rho GTPase-1 (Miro1) which acts as a sensor for cytosolic calcium 

levels ([Ca
2+

]c); elevated [Ca
2+

]c disrupts mitochondrial transport via an effect on 

Miro1. To gain insight into the mechanisms underlying the VAPBP56S effect on 

mitochondrial transport, I monitored [Ca
2+

]c levels in VAPBP56S expressing primary 

rat cortical neurons. Expression of VAPBP56S but not VAPB increased resting [Ca
2+

]c 

in these cells. Moreover, the amounts of tubulin but not kinesin-1 that were associated 

with Miro1 were reduced in VAPBP56S compared to VAPB transfected HEK293 cells. 

Also, expression of a Ca
2+

 insensitive mutant of Miro1 rescued defective mitochondrial 

axonal transport and restored the amounts of tubulin associated with the Miro1/kinesin-

1 complex to normal in VAPBP56S expressing HEK293 cells. Thus VAPBP56S may 
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perturb axonal transport of mitochondria by disrupting Ca
2+

 homeostasis and affecting 

the interaction of Miro1/kinesin-1 with tubulin. 

 

Publications in refereed journals arising from the thesis 
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Amyotrophic lateral sclerosis-associated mutant VAPBP56S perturbs calcium 
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De Vos KJ, Mórotz GM, Stoica R, Tudor EL, Lau KF, Ackerley S, Warley A, 

Shaw CE, Miller CC. VAPB interacts with the mitochondrial protein PTPIP51 to 

regulate calcium homeostasis. Hum. Mol. Genet. (2012) 21:1299-1311. 
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rpm   revolutions per minute 

SALS   sporadic ALS  

SAX-3 Robo  sensory axon guidance 3 Roundabout 

Scs2   suppressor of choline sensitivity  

SD   standard deviation 

SDS   sodium dodecyl sulphate  

SDS-PAGE  sodium dodecyl sulphate-polyacrylamide gel electrophoresis  

SEM   standard error of mean 

Sig-1R   Sigma-1 receptor  

SMA   spinal muscular atrophy  
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SNARE soluble N-ethylmaleimide-sensitive factor-attached protein 

receptor  

SOD1   Cu/Zn superoxide dismutase 1  

T   thymine 

TAE   Tris-acetate-EDTA  

TARDBP  trans-activation response DNA binding protein gene 

TBS   Tris-buffered saline  

TDP-43  trans-activation response DNA binding protein 43  

TE   Tris-EDTA  

TEMED  N,N,N',N'-tetramethylethylenediamine 

TRAK   trafficking kinesin 

Tris   tris(hydroxymethyl)aminomethane 

UCSF   University of California, San Francisco  

UK   United Kingdom  

UPR   unfolded protein response  

USA   United States of America  

v/v   volume/volume 

VAPB   vesicle-associated membrane protein-associated protein B  

VAPBP56S  proline to serine substitution at position 56 in VAPB  

VAPBT46I  threonine to isoleucine substitution at position 46 in VAPB 

VCP   valosin-containing protein 

VDAC1  voltage-dependent anion channel 1  

w/v   weight/volume 

XBP1   X-box-binding protein 1 

X-gal   5-bromo-4-chloro-3-indoyl-β-D-galactopyranoside  
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1 INTRODUCTION 

1.1 Motor Neuron Disease 

“Motor Neuron Disease” (MND) is the collective name of a group of progressive 

neurodegenerative disorders that involve selective loss of upper and/or lower motor 

neurons. Clinically, MND is characterised by progressive weakness and wasting of 

muscles, leading to increasing loss of mobility in the limbs and difficulties with speech, 

swallowing and breathing (D'Amico et al., 2011; Finsterer, 2010; Strong and Gordon, 

2005). The most prevalent MND is ALS. 

There are nine subtypes of MND that are categorised according to the motor 

neurons (upper or lower) affected and the clinical phenotype that results (Table 1.1). 

ALS and progressive bulbar palsy (PBP) are characterised by loss of upper and lower 

motor neurons in the spinal cord, motor cortex and brain stem. In contrast, primary 

lateral sclerosis (PLS) and hereditary spastic paraplegia (HSP) only affect cortical upper 

motor neurons, and in spinal muscular atrophy (SMA), spinobulbar muscular atrophy 

(SBMA; also known as Kennedy’s disease), progressive muscular atrophy (PMA), 

monomelic amyotrophy (also known as Hirayama disease) and brachial amyotrophic 

diplegia (BAD) only lower motor neurons in the lower bulbar region and spinal cord are 

selectively damaged (Strong and Rosenfeld, 2003; Strong and Gordon, 2005).  
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Table 1.1. Classification of motor neuron disease 

Affected neurons Disease type  

Upper and lower motor neuron 

involvement 

Amyotrophic lateral sclerosis (ALS) 

Progressive bulbar palsy (PBP) 

Pure upper motor neuron involvement  
Primary lateral sclerosis (PLS) 

Hereditary spastic paraplegia (HSP) 

Pure lower motor neuron involvement  

Spinal muscular atrophy (SMA) 

Spinobulbar muscular atrophy (SBMA) 

Progressive muscular atrophy (PMA) 

Monomelic amyotrophy 

Brachial amyotrophic diplegia (BAD) 

 

1.1.1 Clinical features and pathology of amyotrophic lateral 

sclerosis (ALS) 

ALS is the most common adult onset motor neuron disorder. The prevalence of 

ALS is between 2.7 and 7.4 per 100,000 persons and its incidence is between 1.9 and 

2.4 per 100,000 persons per year in European and North American countries 

(Logroscino et al., 2010; Turabelidze et al., 2008; Wolfson et al., 2009; Worms, 2001). 

ALS is characterised by upper and lower motor neuron degeneration which leads to 

progressive muscle atrophy and ultimately paralysis and death. Additionally, some cases 

are accompanied by Parkinsonism or frontotemporal dementia (ALS-FTD) (Kiernan et 

al., 2011).  

The majority of ALS cases are sporadic (SALS) with no known genetic linkage 

and familial history, but approximately 5% of ALS cases are inherited and are known as 

familial ALS (FALS) (Byrne et al., 2011). The clinical symptoms are similar in both 

sporadic and familial forms suggesting the possibility of common disease mechanisms. 

Following progressive degeneration of upper and lower motor neurons, death due to 

respiratory failure usually occurs within 2 to 5 years from onset in the majority of the 
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cases (Kiernan et al., 2011). In addition to this ‘classical’ form of ALS, there are rare 

juvenile forms with an age of onset varying from 1 to 25 years of age and very slow 

progression (Andersen and Al-Chalabi, 2011). 

ALS symptoms usually start with muscle weakness in the upper or lower limbs or 

dysarthria of speech. The degeneration and loss of motor neurons in the primary motor 

cortex, brainstem and spinal cord are accompanied by astrocytic gliosis and the 

presence of intraneuronal inclusions (Kiernan et al., 2011; Wood et al., 2003). There are 

three main types of intraneuronal inclusions in ALS, namely Bunina bodies, hyaline 

conglomerate inclusions and ubiquitinated inclusions (Wood et al., 2003).   

Bunina bodies are eosinophilic, cytoplasmic inclusions which stain positive for 

cystatin C, peripherin and transferrin (Bunina, 1962; Mizuno et al., 2006b; Mizuno et 

al., 2011; Okamoto et al., 1993). Bunina bodies are present in the majority of ALS cases 

but are less common in other neurological conditions. They possibly originate from 

smooth endoplasmic reticulum (ER) or from the Golgi apparatus (Okamoto et al., 1993; 

Okamoto et al., 2008; Piao et al., 2003).  

Hyaline conglomerate inclusions are large accumulations of phosphorylated and 

non-phosphorylated neurofilaments (Hirano et al., 1984a; Hirano et al., 1984b; Itoh et 

al., 1992; Munoz et al., 1988). Neurofilaments are synthesised in the cell body and 

transported into the axon and disruption of their transport is observed in ALS mouse 

models (Collard et al., 1995; Williamson and Cleveland, 1999; Zhang et al., 1997). 

Neurofilament transport is inhibited by phosphorylation of neurofilament side arms 

(Ackerley et al., 2004; Ackerley et al., 2003; Shea et al., 2004), and phosphorylated 

neurofilament deposits have been observed in ALS patients and mutant Cu/Zn 

superoxide dismutase 1 (SOD1) expressing transgenic mice (Ackerley et al., 2004; Itoh 

et al., 1992; Munoz et al., 1988; Nguyen et al., 2001; Sobue et al., 1990; Tu et al., 
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1996). Thus, their perturbed axonal transport may cause their pathological 

accumulation. Hyaline conglomerate inclusions have also been reported in other 

neurodegenerative diseases in addition to ALS and in control samples and therefore they 

are less specific for ALS than Bunina bodies and ubiquitinated inclusions (Kusaka and 

Hirano, 1985; Sobue et al., 1990).  

Ubiquitinated inclusions are present in most ALS cases and are often positive for 

trans-activation response deoxyribonucleic acid (DNA) binding protein 43 (TDP-43) 

(Arai et al., 2006; Neumann et al., 2006; Piao et al., 2003). Indeed, ubiquitinated 

cytoplasmic accumulations of TDP-43 are present in most ALS cases and are now 

considered as a hallmark pathology of ALS. However, in SALS and FALS cases with 

mutations in SOD1 and fused in sarcoma (FUS; also known as translocated in 

liposarcoma (TLS)) the ubiquitinated inclusions are generally believed to be TDP-43 

negative (Mackenzie et al., 2007; Vance et al., 2009). Another commonly found protein 

in ubiquitinated inclusions is protein 62 (p62; also known as sequestosome 1), a 

cytosolic protein linked to ubiquitin and protein degradation (Arai et al., 2003; Mizuno 

et al., 2006a; Moscat et al., 2007; Nakano et al., 2004; Seibenhener et al., 2007). p62 

immunoreactivity has been observed in a number of neurodegenerative diseases in 

addition to ALS suggesting that p62 may be involved in the pathogenesis of a spectrum 

of disorders (Arai et al., 2003; Kuusisto et al., 2001; Nakano et al., 2004). Ubiquitinated 

inclusions can be divided into two groups according to their morphology: skein-like 

inclusions are filamentous whereas Lewy body-like inclusions are spherical (Kato et al., 

1989; Leigh et al., 1988; Lowe et al., 1988).  
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1.1.2 Genetics of ALS 

Mutations in a number of genes have been shown to cause FALS (Table 1.2) and 

genetic risk factors for SALS have also been described (Table 1.3). A full list of ALS-

associated genes is also available on the following websites: ALSoD 

(http://alsod.iop.kcl.ac.uk) and ALSGene (http://www.alsgene.org) (Abel et al., 2012; 

Lill et al., 2011). 

FALS inheritance is mainly autosomal dominant but autosomal recessive and X-

chromosome linked forms have also been reported (Table 1.2) (Andersen and Al-

Chalabi, 2011). The majority of FALS is adult onset but 5 loci have been described that 

lead to juvenile onset disease (ALS2, ALS4, ALS5, ALS15, and ALS16) (Table 1.2) 

(Andersen and Al-Chalabi, 2011). Some of the most common familial forms of ALS 

involve mutations in the chromosome 9 open reading frame 72 (C9ORF72), SOD1, 

TARDBP and FUS genes. In addition, mutations in the VAPB gene cause ALS type-8 

(Chen et al., 2010a; Nishimura et al., 2004) as VAPB is the topic of this thesis VAPB is 

discussed in section 1.2. 

Expansion of the GGGGCC hexanucleotide repeat in intron 1 of the C9ORF72 

gene is currently the most common genetic defect in FALS (Cooper-Knock et al., 2012; 

Majounie et al., 2012; Sabatelli et al., 2012). In a Finnish population, repeat expansions 

in C9ORF72 underlie 46% of FALS and in a North American cohort C9ORF72 

expansions accounted for 23.5% of FALS (DeJesus-Hernandez et al., 2011; Renton et 

al., 2011). The C9ORF72 gene is expressed in most tissues and encodes an 

uncharacterised protein. Expansion of the hexanucleotide repeat in C9ORF72 is also 

seen in some patients with fronto-temporal dementia (Byrne et al., 2012; DeJesus-

Hernandez et al., 2011; Renton et al., 2011).  
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Mutations in the SOD1 gene on chromosome 21 account for approximately 20% 

of FALS (Millecamps et al., 2010; Rosen et al., 1993). More than 150 disease-

associated mutations have been identified in SOD1. SOD1 is a widely expressed mainly 

cytosolic protein that functions to catalyse the dismutation of superoxide by converting 

it to oxygen and hydrogen peroxide (Perry et al., 2010). Mutant SOD1 is misfolded and 

it aggregates in insoluble complexes and forms ubiquitinated, cytosolic inclusion bodies 

in SOD1 transgenic mice and ALS patients (Bruijn et al., 1997; Bruijn et al., 1998; 

Deng et al., 1993; Johnston et al., 2000; Shibata et al., 1994; Shibata et al., 1996).  

Mutations in the TARDBP gene (encoding TDP-43) on chromosome 1 cause adult 

onset, autosomal dominant FALS with or without FTD and FTD linked to TDP-43 

pathology (FTLD-TDP) (Benajiba et al., 2009; Gitcho et al., 2008; Kabashi et al., 2008; 

Kovacs et al., 2009; Sreedharan et al., 2008; Van Deerlin et al., 2008; Yokoseki et al., 

2008). Mutations in the FUS gene on chromosome 16 cause adult onset, autosomal 

dominant FALS, ALS with FTD and FTD without ALS (Kwiatkowski et al., 2009; 

Vance et al., 2009). Mutations in the TARDBP and FUS genes account for 

approximately 4.1% and 4.4% of FALS, respectively (Millecamps et al., 2010). Both 

TDP-43 and FUS are nuclear proteins involved in ribonucleic acid (RNA) metabolism. 

Mutant TDP-43 and FUS show abnormal cytoplasmic localisation and form inclusions 

(Arai et al., 2006; Kwiatkowski et al., 2009; Neumann et al., 2006; Vance et al., 2009).  
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Table 1.2 Familial amyotrophic lateral sclerosis-associated genes. 

FALS type Onset Inheritance Locus Gene References 

ALS1 Adult AD/AR 21q22.1/21q22.11 SOD1 (Rosen et al., 1993) 

ALS2 Juvenile AR 2q33.1 ALS2 (Hadano et al., 2001; Yang et al., 2001) 

ALS3 Adult AD 18q21 unknown (Hand et al., 2002) 

ALS4 Juvenile AD 9q34.13 SETX (Chen et al., 2004a) 

ALS5 Juvenile AR 15q21.1 SPG11 (Orlacchio et al., 2010) 

ALS6 Adult AD/AR 16p11.2 FUS (Kwiatkowski et al., 2009; Vance et al., 

2009) 

ALS7 Adult AD 20p13 unknown (Sapp et al., 2003) 

ALS8 Adult AD 20q13.33 VAPB (Nishimura et al., 2004) 

ALS9 Adult AD 14q11.2 ANG (Greenway et al., 2006; van Es et al., 

2009a) 

ALS10 Adult AD/AR 1p36.22 TARDBP (Gitcho et al., 2008; Kabashi et al., 2008; 

Sreedharan et al., 2008; Van Deerlin et al., 

2008; Yokoseki et al., 2008) 

ALS11 Adult AD 6q21 FIG4 (Chow et al., 2009) 

      

ALS12 Adult AD/AR 10p13 OPTN (Maruyama et al., 2010) 

ALS13 Adult AD 12q24.12 ATXN2 (Elden et al., 2010; Van Damme et al., 

2011) 

ALS14 Adult AD 9p13.3 VCP (Johnson et al., 2010) 

ALS15 Adult/ 

Juvenile 

XD Xp11.21 UBQLN2 (Deng et al., 2011) 

ALS16 Adult/ 

Juvenile 

AD/ 

AR 

9p13.3 SIGMAR1 (Al-Saif et al., 2011; Luty et al., 2010) 

ALS18 Adult AD 17p13.3 PFN1 (Wu et al., 2012) 
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Continued from page 27.     

FALS type Onset Inheritance Locus Gene References 

ALS-FTD1 Adult AD 9q21-22 unknown (Hosler et al., 2000) 

ALS-FTD2 Adult AD 9p21 C9ORF72 (DeJesus-Hernandez et al., 2011; Renton et 

al., 2011) 

uncategorised Adult AD 2p13.1 DCTN1 (Münch et al., 2004) 

uncategorised Adult AD 12q24.11 DAO (Mitchell et al., 2010) 

AD=autosomal dominant; ALS=amyotrophic lateral sclerosis; ALS-FTD=amyotrophic lateral sclerosis with frontotemporal  

dementia; AR=autosomal recessive; FALS=familial amyotrophic lateral sclerosis; XD=X-chromosome-linked dominant 

Data were obtained from (Andersen and Al-Chalabi, 2011) and the ALSoD website (http://alsod.iop.kcl.ac.uk).  
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The majority of ALS cases are sporadic and probably originate as the result of a 

complex interplay between genetic and/or environmental factors. Genetic screens and 

genome-wide association studies have revealed several susceptibility genes and genetic 

variants contributing to ALS pathogenesis (Table 1.3). However, most of the 

susceptibility genes and genetic variants await confirmation in additional studies and no 

single gene has been shown to be consistently associated with ALS risk. Some of the 

ALS susceptibility genes that are involved in cytoskeleton, axonal transport and Ca
2+

 

homeostasis (i.e. relevant to this thesis) are discussed below.  

Variants of the neurofilament heavy chain gene (NEFH) have been observed in 

several ALS cases (Al-Chalabi et al., 1999; Figlewicz et al., 1994). Moreover, mutations 

in the gene encoding the intermediate filament peripherin (PRPH) (Gros-Louis et al., 

2004; Leung et al., 2004) have also been found in ALS patients. Interestingly, a genetic 

variant of kinesin-associated protein 3 (KIFAP3) is associated with increased survival 

in ALS patients (Landers et al., 2009). Since accumulation of neurofilaments and 

damaged axonal transport is seen in ALS cases (Ackerley et al., 2004; Carpenter, 1968; 

Hirano et al., 1984a; Ince et al., 1998; Sasaki and Iwata, 2007) (also see section 1.1.3.1 

and 1.1.3.7) mutations in NEFH, PRPH, and KIFAP3 strengthen the role of transport 

defect in ALS pathogenesis.  

Further ALS susceptibility gene variants have been identified in the 1,4,5-

triphosphate receptor 2 (IP3R2) and uncoordinated 13 homolog A (UNC13A) genes 

(van Es et al., 2007; van Es et al., 2009b). IP3R2 is an ER resident Ca
2+

 channel which 

is responsible for intracellular Ca
2+

 homeostasis (Mikoshiba, 2006). UNC13A regulates 

transmitter release from glutamatergic and GABAergic neurons (Varoqueaux et al., 

2002). Aberrant mRNA processing of SLC1A2, encoding excitatory amino acid 

transporter 2 is also found in ALS (Aoki et al., 1998; Lin et al., 1998). Since perturbed 
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Ca
2+

 homeostasis and elevated glutamate levels have been detected in ALS patients 

(Rothstein et al., 1992; Rothstein et al., 1990; Siklós et al., 1996) (also see section 

1.1.3.3), ITPR2, UNC13A and SLC1A2 may be important susceptibility genes for ALS.  

In addition to the genetic risk factors, environmental risk factors for ALS have 

been described. These risk factors include smoking (Armon, 2003; Armon, 2009), 

intensive sport (Beghi et al., 2010; Chio et al., 2005), active military service (Horner et 

al., 2003; Kasarskis et al., 2009; Schulte et al., 1996), exposure to chemicals (Fang et 

al., 2009), lead (Kamel et al., 2002) and neurotoxins (Cox and Sacks, 2002). However, 

how different environmental factors influence ALS is not known and requires further 

investigation. 
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Table 1.3 Susceptibility genes for ALS. 

Gene Locus References 

ALAD 9q33.1 (Kamel et al., 2003) 

APEX1 14q11.2 (Hayward et al., 1999; 

Olkowski, 1998) 

APOE 19q13.2 (al-Chalabi et al., 1996; 

Moulard et al., 1996) 

CHMP2B 3p11.2 (Parkinson et al., 2006) 

CNTF 11q12.1 (Giess et al., 2002) 

CYP2D6 22q13.1 (Siddons et al., 1996) 

DPP6 7q36.2 (van Es et al., 2008) 

ELP3 8p21.1 (Simpson et al., 2009) 

EPHA4 2q36.1 (Van Hoecke et al., 

2012) 

FGGY 1p32.1 (Dunckley et al., 2007) 

HFE 6p21.3 (Wang et al., 2004) 

IP3R2 12p11 (van Es et al., 2007) 

KIFAP3 1q24.2 (Landers et al., 2009) 

LIF 22q12.2 (Giess et al., 2000) 

MAOB Xp11.23 (Orru et al., 1999) 

MAPT 17q21.1 (Poorkaj et al., 2001) 

NEFH 22q12.2 (Skvortsova et al., 2004) 

OGG1 3p26.2 (Coppede et al., 2007) 

PGRN 17q21.32 (Sleegers et al., 2008) 

PON1; 

PON2; 

PON3 

7q21.3 (Saeed et al., 2006; 

Slowik et al., 2006) 

PSEN1 14q24.3 (Panas et al., 2000) 

PRPH 12q12-q13 (Gros-Louis et al., 2004; 

Leung et al., 2004) 

SLC1A2 11p13-p12 (Aoki et al., 1998; Lin et 

al., 1998) 

SMN1; 

SMN2 

5q13.2 (Corcia et al., 2002; 

Veldink et al., 2001) 

SOD2 6q25.3 (Van Landeghem et al., 

1999) 

SQSTM1 5q35 (Fecto et al., 2011) 

TAF15 17q12 (Ticozzi et al., 2011) 

UNC13A 19p13.11 (van Es et al., 2009b) 

VEGFA 6p12 (Lambrechts et al., 2003) 

ZNF512B 20q13.33 (Iida et al., 2011) 

Data were obtained from the ALSoD website (http://alsod.iop.kcl.ac.uk). 
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1.1.3 Mechanisms of neurodegeneration in ALS 

The mechanisms by which motor neurons die in ALS are not properly understood. 

However, the principal mechanisms are pathological protein aggregation, ER stress, 

glutamatergic excitotoxicity, mitochondrial dysfunction, oxidative stress, damage to 

RNA processing and damage to axonal transport (for review see (Ferraiuolo et al., 

2011)). None of these mechanisms are mutually exclusive and it is possible/probable 

that all contribute to the disease process. In addition, it has become clear that ALS is not 

just a disease of motor neurons, but that other cell types such as microglia and 

astrocytes contribute significantly to the pathogenic process (for review see (Ferraiuolo 

et al., 2011). The evidence supporting these different mechanisms is discussed below. 

 

1.1.3.1 Pathological protein aggregation 

The strongest evidence that abnormal protein aggregation is a component of the 

ALS disease process comes from the pathology of ALS. Indeed, the presence of 

ubiquitinated inclusions within motor neurons is a hallmark pathology of ALS (Ince et 

al., 2011; Strong et al., 2005). In particular, ubiquitinated TDP-43 inclusions are a 

common feature in ALS (Arai et al., 2006; Neumann et al., 2006). TDP-43 is principally 

a nuclear protein but in ALS it is proteolytically processed and redistributes to the 

cytoplasm where it becomes abnormally phosphorylated and ubiquitinated (Neumann et 

al., 2006). Phosphorylation of TDP-43 on serines 409/410 occurs in these inclusions 

(Arai et al., 2010; Hasegawa et al., 2008). Since mutations in TDP-43 are linked to 

familial and sporadic forms of ALS (Gitcho et al., 2008; Kabashi et al., 2008; 

Sreedharan et al., 2008; Van Deerlin et al., 2008; Yokoseki et al., 2008), it seems likely  
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that aberrant aggregation of TDP-43 contributes in at least some capacity to the 

disease process. 

Pathological accumulations of other proteins also occur in ALS. Thus, 

neurofilaments are present in hyaline conglomerate inclusions and abnormal 

hyperphosphorylated neurofilaments are seen in cell bodies; neurofilaments are 

normally hyperphosphorlated in axons and not in cell bodies (Ackerley et al., 2004; 

Carpenter, 1968; Hirano et al., 1984a; Ince et al., 1998). Also inclusions containing 

abnormally misfolded SOD1 are seen in some FALS patients and especially those 

caused by mutant SOD1 (Shibata et al., 1994). More recently, antibodies have been 

created that selectively detect misfolded mutant but not normal SOD1 and these 

antibodies label the ALS SOD1 inclusions (Rakhit et al., 2007). Finally, in FALS 

patients linked to mutant FUS, cytoplasmic inclusions of mutant FUS are detected; FUS 

is normally found mainly in the nucleus (Kwiatkowski et al., 2009; Vance et al., 2009). 

Some genetic evidence also supports a role for abnormal protein aggregation in 

ALS. Thus mutations in valosin-containing protein (VCP) on chromosome 9 have been 

found in 4 patients with FALS (Johnson et al., 2010). VCP (also known as p97) is an 

abundantly expressed adenosine triphosphate (ATP)ase associated with various 

activities that is involved in several cellular processes including mitochondrial and ER 

protein degradation, endolysosomal sorting, the ubiquitin proteasome system, ER and 

Golgi reassembly, nuclear envelope formation and the cell cycle (Acharya et al., 1995; 

Cao et al., 2003; Dai and Li, 2001; Fu et al., 2003; Hetzer et al., 2001; Latterich et al., 

1995; Rabouille et al., 1995; Ritz et al., 2011; Xu et al., 2011a; Ye et al., 2001; Ye et al., 

2004). ALS-associated mutation in VCP has been shown to cause impaired clearance of 

aggregated proteins, perturbs endolysosomal sorting and induces autophagosome 

accumulation (Ju et al., 2009; Ju et al., 2008; Ritz et al., 2011; Watts et al., 2004). 
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Interestingly, VCP plays a central role in ER-associated degradation (ERAD) by 

escorting ubiquitinated proteins to the proteasome for degradation by binding to 

Degradation in the ER-like protein 1 (Derlin-1) (Ye et al., 2005; Ye et al., 2004). Thus 

VCP may also be involved in mutant SOD1 induced ER stress pathways (see section 

1.1.3.2). 

Mutations in ubiquilin 2 (UBQLN2) cause X-chromosome linked dominantly 

inherited ALS with or without FTD (ALS15) (Deng et al., 2011). The ubiquitin-like 

protein ubiquilin 2 is involved in protein degradation and binds to poly-ubiquitin chains 

and 19S proteasome subunits (Seok Ko et al., 2004). Mutant ubiquilin 2 perturbs the 

ubiquitin proteasome system suggesting a mechanism linked to impaired protein 

clearance in ALS (Deng et al., 2011).  

 

1.1.3.2 ER stress 

Cell survival is inseparably tied to protein quality control, which is achieved by 

protein homeostasis or proteostasis. Proteostasis entails a complex regulatory network 

that balances protein biosynthesis, folding, translocation, assembly/disassembly, and 

clearance (degradation). Eukaryotic cells have two major degradation systems, the 

proteasome and the lysosome (Wong and Cuervo, 2010). The proteasome selectively 

recognizes ubiquitinated substrates, which are mostly short-lived proteins. Autophagy 

denotes the delivery of cytosolic components and organelles (dubbed mitophagy in case 

of mitochondria) to the lysosome for degradation. Cells use stress sensors and inducible 

pathways to respond to a loss of proteostatic control. One of these pathways is the 

unfolded protein response (UPR), an adaptive response to the accumulation of 

misfolded proteins in the lumen of the ER (i.e. ER stress) (for reviews see (Bernales et 
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al., 2006; Lin et al., 2008)). The UPR tries to restore proteostasis by (i) attenuation of 

translation, (ii) induction of chaperones to aid protein folding, and (iii) upregulation of 

degradation pathways such as ERAD and autophagy to remove misfolded proteins. 

However, if ER stress persists the UPR initiates apoptosis (Nakagawa et al., 2000; 

Nishitoh et al., 2002). 

A number of lines of evidence suggest that ER stress occurs in ALS. Firstly, 

mutations in the gene encoding VAPB cause ALS type-8 and there is evidence that 

VAPB functions in mediating the UPR in response to ER stress. Since this thesis 

involves work with VAPB, this aspect is covered in more detail in section 1.2.1.5. 

Secondly, ER stress and activation of the UPR has been described in spinal cord 

of presymptomatic transgenic mice that express ALS mutant SOD1 and which develop 

ALS, and in cell lines that express mutant SOD1 (Atkin et al., 2006; Kikuchi et al., 

2006; Nishitoh et al., 2008; Tobisawa et al., 2003). Interestingly, in mutant SOD1 

expressing mice the upregulation of the ER resident misfolded protein sensor glucose-

regulated protein 78/immunoglobulin heavy-chain binding protein (GRP78/BiP), which 

is indicative of ER stress and UPR, appears to be specific for the fast-fatigable motor 

neurons, which are most susceptible to disease in ALS and was observed as early as 

postnatal day 5 (Saxena et al., 2009). How mutant SOD1 induces ER stress is not clear 

as SOD1 is cytosolic but it has been shown that mutant SOD1 aggregates accumulate in 

the ER lumen and on the cytosolic surface of the ER where they interact with 

GRP78/BiP and Derlin-1, respectively (Kikuchi et al., 2006; Nishitoh et al., 2008). 

Binding of mutant SOD1 to Derlin-1 inhibits ERAD and increases ER stress and UPR 

(Nishitoh et al., 2008). The aberrant interaction between mutant SOD1 and GRP78/BiP 

may also lead to an uncontrolled and prolonged UPR by preventing GRP78/BiP 

interaction with ER stress sensors (Kikuchi et al., 2006). Sustained ER stress and UPR 
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activates apoptosis via cysteinyl aspartate-specific protease-12 (caspase-12) and 

apoptosis signal-regulating kinase 1 (ASK1) (Nakagawa et al., 2000; Nishitoh et al., 

2002). Caspase-12 and ASK1 are activated in ALS mutant SOD1 expressing transgenic 

mice suggesting that UPR dependent apoptosis may contribute to neurodegeneration in 

ALS (Atkin et al., 2006; Holasek et al., 2005; Kikuchi et al., 2006; Nishitoh et al., 2008; 

Wengenack et al., 2004; Wootz et al., 2004). 

Finally, TDP-43 is cleaved to generate carboxyl (C)-terminal 25 kDa fragments, 

which are ubiquitinated and hyperphosphorylated in ALS; these are the main species 

found in cytoplasmic TDP-43 aggregates (Igaz et al., 2009; Igaz et al., 2008; Neumann 

et al., 2006; Zhang et al., 2009). Interestingly, chemical induction of ER stress has been 

shown to cause cleavage of TDP-43 (Suzuki et al., 2011).  

 

1.1.3.3 Glutamatergic excitotoxicity 

Glutamate is the major excitatory neurotransmitter in the central nervous system. 

Glutamate released from the presynaptic neuron exerts its effects by binding to a 

number of postsynaptic ionotropic and metabotropic receptors (Nicoletti et al., 2011; 

Traynelis et al., 2010). Under physiological conditions, the excitatory glutamate signal 

is terminated by rapid removal of glutamate from the synaptic cleft by glial and 

neuronal glutamate reuptake transporters (Kanai and Hediger, 2004). The most 

abundant glutamate reuptake transporter is the astroglial excitatory amino acid 

transporter 2 (EAAT2; also known as glutamate transporter 1 (GLT1)) (Danbolt, 2001). 

It is well established that excessive stimulation of glutamate receptors causes injury to 

neurons in a process called excitotoxicity (Foran and Trotti, 2009). Excitotoxicity may 

be caused by increased levels of glutamate at the synapse or by sensitization of the 
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postsynaptic neuron to glutamate because of alterations in glutamate receptor expression 

and/or changes in Ca
2+

 and energy homeostasis. Several lines of evidence suggest that 

glutamate excitotoxicity is implicated in ALS and causes motor neuron damage.  

Firstly, elevated levels of glutamate in the cerebrospinal fluid of ALS patients 

have been described (Shaw et al., 1995a). Also levels of EAAT2 are reduced in ALS 

spinal cord (Rothstein et al., 1992; Rothstein et al., 1995). Together, these observations 

suggest that glutamate metabolism is disrupted in ALS.  

Secondly, motor neurons are particularly sensitive to alpha-amino-3-hydroxy-5-

methylisoxazole-4-propionic acid (AMPA) receptor mediated excitotoxicity (Carriedo 

et al., 1996; Van Damme et al., 2005; Van Den Bosch et al., 2000) and this is most 

likely due to several intrinsic motor neuron properties. Thus, motor neurons express 

only low levels of Ca
2+

 buffering proteins such as parvalbumin and calbindin-D28K 

(Ince et al., 1993) and consequently rely strongly on mitochondria to maintain Ca
2+

 

homeostasis (Alexianu et al., 1994; Andressen et al., 1993). Repeated stimulation of 

motor neurons leads to saturation of mitochondrial Ca
2+

 buffering and permanently 

increases [Ca
2+

]c (Grosskreutz et al., 2007). Furthermore, excessive Ca
2+

 entry into 

motor neurons can induce Ca
2+

 overload in mitochondria, which leads to depolarization 

and production of reactive oxygen species (ROS) (Carriedo et al., 2000). A considerable 

amount of evidence suggests that mitochondrial function, including Ca
2+

 buffering, is 

compromised in ALS (see section 1.1.3.4), which could further increase the 

vulnerability of motor neurons to excitotoxicity. Also, motor neurons have a high 

number of Ca
2+

-permeable AMPA receptors because they are relatively deficient in the 

glutamate receptor 2 (GluR2) AMPA receptor subunit (Heath et al., 2002; Kawahara et 

al., 2003); AMPA receptors that include the GluR2 subunit are Ca
2+

 impermeable. 

Additionally, the Q/R editing of GluR2 mRNA is reduced in ALS patients (Kawahara et 
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al., 2004; Takuma et al., 1999), and lack of Q/R editing of GluR2 increases the Ca
2+

 

permeability of GluR2 (Burnashev et al., 1992). 

Thirdly, mutations in alsin, a guanine nucleotide exchange factor (GEF) for the 

small guanosine triphosphate (GTP)ases rat sarcoma (Ras)-related GTP-binding protein 

5 (Rab5) and Ras-related C3 botulinum toxin substrate 1 (Rac1), cause autosomal 

recessive juvenile onset FALS type-2 (ALS2), infantile-onset HSP, and juvenile PLS 

(Eymard-Pierre et al., 2002; Gros-Louis et al., 2003; Hadano et al., 2001; Hentati et al., 

1994; Otomo et al., 2003; Topp et al., 2004; Yang et al., 2001) and alsin has been linked 

to glutamate signalling. In particular, alsin has been shown to interact with glutamate 

receptor interacting protein 1 (GRIP1), a regulator of synaptic targeting of GluR2 (Lai 

et al., 2006). Alsin deficiency alters the subcellular distribution of GRIP1 and reduces 

the amount of GluR2 at the synapse leading to increased susceptibility to glutamate 

excitotoxicity (Lai et al., 2006).  

However, perhaps the strongest evidence that excitotoxicity has a role in ALS is 

that riluzole, the only drug proven to slow the disease process in humans, has anti-

excitotoxic properties (Bensimon et al., 1994; Lacomblez et al., 1996). Riluzole inhibits 

pre-synaptic glutamate release, but may also influence post-synaptic events by non-

competitive inhibition of N-methyl-D-aspartate (NMDA) and AMPA receptors (Albo et 

al., 2004; Debono et al., 1993) and by affecting the γ-aminobutyric acid A (GABAA) 

receptor (He et al., 2002). However, other anti-glutamate drugs have failed in clinical 

trials (Cudkowicz et al., 2003; Miller et al., 2001), suggesting that riluzole may also act 

on other pathways. One such pathway may be axonal transport (Stevenson et al., 2009) 

(see section 1.1.3.7). 
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1.1.3.4 Mitochondrial dysfunction 

Disease-associated abnormalities in mitochondrial morphology, such as 

mitochondrial swelling and vacuolisation have been observed in both FALS and SALS 

patients (Sasaki and Iwata, 1996; Sasaki and Iwata, 2007). Moreover, these 

morphological changes correlate with functional alterations such as defects in ATP 

production and the electron transport chain, and Ca
2+

 buffering (Borthwick et al., 1999; 

Carrì et al., 1997; Fujita et al., 1996; Siklós et al., 1996; Siklós et al., 1998; Wiedemann 

et al., 2002). Hence it has been proposed that mitochondrial dysfunction may be a key 

pathogenic event in ALS. 

Mitochondrial abnormalities and functional deficits have been consistently 

reported in ALS mutant SOD1 transgenic mouse models and mutant SOD1 expressing 

cell lines (Dal Canto and Gurney, 1995; Kong and Xu, 1998; Liu et al., 2004; Menzies 

et al., 2002; Pasinelli et al., 2004; Raimondi et al., 2006; Sotelo-Silveira et al., 2009; 

Vande Velde et al., 2011; Wong et al., 1995). A proportion of mutant SOD1 is localised 

to mitochondria and is present in the mitochondrial matrix and intermembrane space, 

and on the outer mitochondrial membrane, suggesting that mutant SOD1 may directly 

damage mitochondria (Higgins et al., 2002; Kawamata and Manfredi, 2008; Liu et al., 

2004; Mattiazzi et al., 2002; Vande Velde et al., 2008; Vijayvergiya et al., 2005). This 

abnormal localisation of mutant SOD1 to mitochondria is specific for spinal cord 

mitochondria and not found in brain or liver, indicating its direct relevance for disease 

(Pasinelli et al., 2004; Vande Velde et al., 2008).  

More recently, a molecular target in mitochondria for mutant SOD1 has been 

identified. Mutant SOD1 directly binds to the voltage-dependent anion channel 1 

(VDAC1) in the outer mitochondrial membrane (Israelson et al., 2010). VDAC1 
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regulates the ion and metabolite flux between mitochondria and cytosol and is also the 

gatekeeper of apoptosis as part of the membrane permeability transition pore 

(McCommis and Baines, 2011). Interaction of mutant SOD1 with VDAC1 decreases 

adenosine diphosphate (ADP) transport across the outer mitochondrial membrane which 

can lead to reduced ATP production (Israelson et al., 2010) and thus may explain the 

perturbation of ATP synthesis that has been observed in mutant SOD1 models (Carrì et 

al., 1997; Damiano et al., 2006; Igoudjil et al., 2011). The targeting of VDAC1 by 

mutant SOD1 may also underlie the aberrant Ca
2+

 handling and impaired Ca
2+

 buffering 

by mitochondria observed in mutant SOD1 models (Grosskreutz et al., 2007; Jaiswal et 

al., 2009; Manfredi and Xu, 2005). Indeed, VDAC1 is involved in Ca
2+

 exchange 

between ER and mitochondria via interaction with inositol-1,4,5-triphosphate receptors 

(IP3R) (Rapizzi et al., 2002; Szabadkai et al., 2006). Aberrant mitochondrial Ca
2+

 

handling has also been described in VAPB-related ALS (De Vos et al., 2012) (see 

section 1.2.2) and ALS patients (Siklós et al., 1996) but it is not clear if this involves 

VDAC1. Nevertheless, impaired mitochondrial Ca
2+

 handling and increased [Ca
2+

]c 

have emerged as a common observation in ALS that could be a primary pathogenic 

event or act indirectly by inducing defects in axonal transport (Chang et al., 2006; 

MacAskill et al., 2009b; Rintoul et al., 2003; Saotome et al., 2008; Wang and Schwarz, 

2009), or by rendering motor neurons vulnerable to excitotoxicity (see section 1.1.3.3). 

In addition to VDAC1, mutant SOD1 binds and aggregates with the anti-apoptotic 

protein B-cell lymphoma-2 (Bcl-2) in spinal cord mitochondria (Pasinelli et al., 2004). 

Such sequestering of Bcl-2 may be the underlying cause of cytochrome c release and 

caspase activation in mutant SOD1 models (Kirkinezos et al., 2005; Takeuchi et al., 

2002).  
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1.1.3.5 Oxidative stress 

The main free radicals in cells are reactive oxygen species (ROS) and reactive 

nitric species (e.g. nitric oxide). ROS are natural by-products of aerobic metabolism that 

are produced mainly by the mitochondrial electron transfer chain and nicotinamide 

adenine dinucleotide phosphate (NAD(P)H) oxidase.  

Several lines of research suggest that oxidative stress is involved in the pathology 

of ALS. Firstly, markers for oxidative stress have been observed in the spinal cord, the 

motor cortex as well as in serum of ALS patients (Abe et al., 1997; Beal et al., 1997; 

Ferrante et al., 1997; Shaw et al., 1995b; Simpson et al., 2004). Secondly, mutant SOD1 

mice display impairment of electron transport and altered mitochondrial Ca
2+

 levels 

which are accompanied by oxidative stress, and the generation of reactive oxygen 

species (Kruman et al., 1999). Finally, overexpression of ALS mutant TDP-43 has been 

shown to cause oxidative injury to motor neuronal cell lines (Duan et al., 2010). 

The source of oxidative stress in ALS is not well defined but most likely involves 

mitochondria (see section 1.1.3.4) and activation of microglial superoxide production. 

Activated microglia increase NAD(P)H oxidase-mediated superoxide production as a 

defence against pathogens (Bedard and Krause, 2007). NAD(P)H oxidase activity is 

upregulated in ALS patients and mutant SOD1 mouse models (Marden et al., 2007; Wu 

et al., 2006). Mechanistically, mutant SOD1 expressed in microglia increases NAD(P)H 

oxidase-mediated superoxide production by binding to Rac1 and locking NAD(P)H 

oxidase in the activated state (Harraz et al., 2008). In addition to this direct effect of 

mutant SOD1 on NAD(P)H oxidase, there is also an indirect mechanism in which 

mutant SOD1 is aberrantly secreted by neurons and astrocytes via interactions with 

chromogranin-A and B to activate microglia (Urushitani et al., 2006; Zhao et al., 2010). 
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Indeed, extracellular wild-type and mutant SOD1 have been observed in the 

cerebrospinal fluid of ALS patients and SOD1 transgenic animals (Jacobsson et al., 

2001; Turner et al., 2005; Urushitani et al., 2006).  

 

1.1.3.6 Damage to RNA processing 

Some of the first evidence that damage to RNA processing contributes to the 

disease process in ALS came from studies of ALS patient material (Lin et al., 1998). In 

particular, defective splicing of mRNA for the glial glutamate transporter EAAT2 was 

seen in ALS patients and this provided a link to excitoxicity in ALS (Lin et al., 1998). 

More recently, genetic and other studies have provided further support that defective 

mRNA metabolism occurs in ALS. Thus, mutations in TDP-43, FUS and senataxin 

have been shown to cause some familial forms of ALS and these proteins are all 

believed to function in mRNA metabolism (Chen et al., 2004b; Kwiatkowski et al., 

2009; Sreedharan et al., 2008; Vance et al., 2009). 

TDP-43 is a DNA and mRNA binding protein that regulates mRNA expression, 

splicing, translation and gene transcription (Cohen et al., 2011). Expression of mutant 

TDP-43 in cells leads to a predominantly cytoplasmic localization of the protein, 

particularly in cytoplasmic stress granules (Arai et al., 2006; Liu-Yesucevitz et al., 

2010; Neumann et al., 2006). Stress granules are cytoplasmic aggregates of mRNA and 

proteins that occur within cells under certain conditions of stress. Stress granules 

function to sequester mRNA not needed for protection against the stress and can 

modulate the signalling balance between apoptosis and survival (Thomas et al., 2011).  
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Some of the mRNA targets for TDP-43 have now been identified and these 

include several that are linked to ALS including FUS, EAAT1, progranulin and TDP-43 

itself (Polymenidou et al., 2011; Sephton et al., 2011; Tollervey et al., 2011).  

Like TDP-43, ALS mutant FUS shows abnormal cytoplasmic localisation and can 

induce the formation FUS containing cytoplasmic stress granules (Dormann et al., 2010; 

Ito et al., 2011). FUS is also believed to function in transport of mRNAs to synapses for 

local translation (Kanai et al., 2004).  

Lastly, expansion of a GGGGCC hexanucleotide repeat in C9ORF72 is currently 

the most common genetic defect in FALS and SALS (and also in FTD) (Cooper-Knock 

et al., 2012; DeJesus-Hernandez et al., 2011; Majounie et al., 2012; Renton et al., 2011; 

Sabatelli et al., 2012). The C9ORF72 gene encodes an uncharacterised protein but it is 

possible that the expanded hexanucleotide repeat acts to sequester mRNA binding 

proteins in foci such that mRNA metabolism is disrupted (DeJesus-Hernandez et al., 

2011). In this scenario, it is mutant C9ORF72 mRNA, not the protein, that is toxic. 

There are precedents for toxic mRNAs causing disease in some myotonic dystrophies 

and ataxias (Todd and Paulson, 2010). 

 

1.1.3.7 Damage to axonal transport 

The correct transport of protein and organelle cargoes is a fundamental 

requirement for virtually every mammalian cell type. Thus ablation of genes encoding 

molecular motors that drive transport often results in a lethal phenotype (Hirokawa and 

Noda, 2008). Neurons are especially dependent upon transport processes since they are 

polarised with axons and dendrites, and also because some of the distances involved in 

transport (especially through axons) can be exceptionally long. Since most neuronal 
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proteins are synthesised within the cell body and then transported to their final 

destination, neurons require transport of proteins, organelles and other nutrients to distal 

regions of axons and dendrites to permit proper functioning and survival of synapses. 

Likewise, transport of trophic factors from synapses to the cell body is also important. 

Transport through axons is called “axonal transport”. Cargo transport from the cell body 

towards the synapse is termed anterograde axonal transport whereas transport from the 

synapse to the cell body is termed retrograde axonal transport. Most long-range 

transport of cargoes through axons is mediated by kinesin and cytoplasmic dynein-1 

molecular motors that move along microtubules. Microtubules are almost uniformly 

orientated within axons with their plus ends (the ends to which tubulin subunits are 

added) positioned towards the synapse. Since most kinesins move toward the plus end 

of microtubules and cytoplasmic dynein-1 moves towards the minus end of 

microtubules, kinesins drive most anterograde and cytoplasmic dynein-1 most 

retrograde axonal transport of cargoes (Hirokawa and Noda, 2008). 

A number of lines of evidence suggest that defective axonal transport contributes 

to ALS (for review see (De Vos et al., 2008)). Firstly, mutations in dynactin, a 

component of the cytoplasmic dynein-1 molecular motor, are linked to ALS (Münch et 

al., 2004; Puls et al., 2003). Mutant dynactin has now been shown to disrupt 

dynactin/dynein function (Levy et al., 2006).  

Secondly, the pathology of ALS is consistent with damage to axonal transport. 

Thus, accumulations of neurofilaments are seen in cell bodies indicating that they are 

not being properly transported into axons (Ackerley et al., 2004; Carpenter, 1968; 

Hirano et al., 1984a; Ince et al., 1998). Likewise, mitochondria accumulate in proximal 

regions of motor neuron axons in ALS suggesting that their transport to more distal 

regions and synapses is perturbed (Sasaki and Iwata, 2007). 
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Thirdly, damage to axonal transport is seen in transgenic mouse and other models 

of ALS. Defective axonal transport of cytoskeleton components such as neurofilaments 

is seen in presymptomatic mutant SOD1 transgenic mice that develop ALS (Williamson 

and Cleveland, 1999; Zhang et al., 1997). Moreover, overexpression of neurofilaments 

including peripherin can model ALS (Beaulieu et al., 1999; Cote et al., 1993; Lee et al., 

1994; Xu et al., 1993). Additionally, damage to axonal transport is also observed in 

these models (Collard et al., 1995; Millecamps et al., 2006). Further evidence that 

axonal transport defects contribute to ALS pathogenesis comes from experiments using 

riluzole, the only drug proven to slow the disease process in humans. Riluzole protects 

against glutamate-induced disruption of axonal transport of neurofilaments in rat 

cortical neurons (Stevenson et al., 2009).  

Besides neurofilament transport, mutant SOD1 also affects axonal transport of 

other cargoes such as vesicles and mitochondria (Bilsland et al., 2010; De Vos et al., 

2007; Kieran et al., 2005; Magrané et al., 2012; Marinković et al., 2012). In particular, 

mutant SOD1 has been shown to inhibit axonal transport of tetanus toxin fragment 

labelled endocytic carriers and mitochondria in motor but not sensory neurons in vivo in 

transgenic mice (Bilsland et al., 2010). Moreover, these transport deficits were detected 

in presymptomatic animals (Bilsland et al., 2010). Such elegant in vivo studies which 

demonstrate that impairment of axonal transport is one of the earliest pathological 

features argue strongly that defective transport contributes to the pathogenic process in 

ALS (Bilsland et al., 2010).  

Fourthly, disruption to molecular motor function can model ALS in transgenic 

mice. The first evidence support this came frome analyses of the Legs at odd angles 

(Loa) and Cramping1 (Cra1) mutant mice (Hafezparast et al., 2003). These animals 

carry point mutations in the gene encoding dynein heavy chain and develop a 
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neurological defects and ALS-type symptoms (Hafezparast et al., 2003). Moreover, 

retrograde axonal transport is defective in these animals (Hafezparast et al., 2003). 

Interestingly, crossing of Loa mice with mutant SOD1 mice produces a surprising 

phenotype involving rescue of axonal transport defects and extension of life span (Chen 

et al., 2007; Kieran et al., 2005). The precise mechanism for this effect is unknown but 

one hypothesis is that reduced retrograde transport caused by the Loa mutation 

counterbalances mutant SOD1 triggered anterograde transport defects to restore an 

overall balance of transport (De Vos et al., 2007; Kieran et al., 2005).  

Finally, mice overexpressing p50/dynamitin develop motor neuron disease 

(LaMonte et al., 2002). p50/dynamitin is a component of the dynactin complex that is 

associated with dynein and overexpression of p50/dynamitin disrupts dynein function 

and axonal transport (LaMonte et al., 2002).  

Although most evidence points towards an involvement of axonal transport 

defects in ALS, there is some evidence suggesting that damage to axonal transport is not 

involved in ALS. Syntaphilin is a protein that anchors mitochondria to halt their 

movement through axons; syntaphilin knockout mice have increased mitochondrial 

movement (Kang et al., 2008). Crossing of ALS mutant SOD1 transgenic mice with 

syntaphilin knockout mice increases mitochondrial axonal transport but this increase 

does not slow disease progression in the mutant SOD1/syntaphilin knockout mice (Zhu 

and Sheng, 2011). However, damage to transport of a number of cargoes, not just 

mitochondria, is seen in mutant SOD1 forms of ALS (Bilsland et al., 2010; De Vos et 

al., 2007; Kieran et al., 2005; Williamson and Cleveland, 1999; Zhang et al., 1997) and 

loss of syntaphilin only stimulates transport of mitochondria. Also, there is evidence 

that mutant SOD1 damage to mitochondrial transport is directional (De Vos et al., 2007) 

but loss of syntaphilin increases both anterograde and retrograde movement (Zhu and 



47 

 

Sheng, 2011). Having the correct balance of anterograde and retrograde transport is 

likely to be important and indeed, correction of this balance is a suggested mechanism 

for how the Loa mutation is protective in mutant SOD1 transgenic mice (Kieran et al., 

2005).  

More recently, analyses of different mutant SOD1 transgenic mice have also 

queried the role of defective axonal transport in ALS (Marinković et al., 2012). In 

particular, defective transport of mitochondria was not observed in mutant SOD1-G85R 

transgenic mice that develop disease whereas wild-type SOD1 overexpressing 

transgenic mice did develop a mitochondrial transport defect (Marinković et al., 2012). 

However, other groups have obtained differing results. In particular, SOD1-G85R 

transgenic mice and neurons transfected to express SOD-G85R have both been shown 

to have defective axonal transport whereas, no transport defects were detected in wild-

type SOD1 expressing neurons (De Vos et al., 2007; Williamson and Cleveland, 1999). 

Also, the onset of the transport defect is remarkably late in wild-type SOD1 

overexpressing mice compared to SOD1-G93A mice (postnatal day 60 vs. postnatal day 

10) (Marinković et al., 2012). It has been reported that some wild-type SOD1 

overexpressing mice exhibit signs of premature aging (Avraham et al., 1988; Avraham 

et al., 1991; Ceballos-Picot et al., 1991) and as such this late transport defect may be 

linked to ageing.  

Thus, on balance most evidence supports a role for defective axonal transport as 

part of the pathogenic process in ALS. Demontrating that further mutant proteins linked 

to ALS also damage axonal transport would increase support for this notion. One of the 

aims of this thesis was to pursue such an approach. 
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1.2 Vesicle-associated membrane protein-associated protein 

B (VAPB) 

VAPs are integral ER proteins that are expressed in mammals, insects, molluscs, 

plants, and fungi (Kagiwada et al., 1998; Laurent et al., 2000; Nishimura et al., 1999; 

Pennetta et al., 2002; Skehel et al., 2000; Skehel et al., 1995; Weir et al., 1998). In 

mammals, there are two VAP isoforms named VAPA and VAPB that are encoded by 

different genes. VAPA and VAPB share approximately 63% sequence identity and are 

expressed in most tissues and cell types including the nervous system (Amarilio et al., 

2005; Gkogkas et al., 2008; Kim et al., 2010; Nishimura et al., 1999; Skehel et al., 

2000; Teuling et al., 2007). VAPs consist of an N-terminal major sperm protein (MSP) 

domain, named for its similarity to the nematode MSP, a central coiled-coil domain and 

a carboxyl (C)-terminal transmembrane domain, which anchors them in the ER 

membrane (Figure 1.1) (Nishimura et al., 1999; Skehel et al., 2000; Soussan et al., 

1999). A splice variant of VAPB that lacks both the coiled-coil and transmembrane 

domains termed VAPC has been described (Nishimura et al., 1999).  

 

VAPB has been implicated in a variety of cellular processes, including bouton 

formation at the neuromuscular junction (Pennetta et al., 2002), ER to Golgi transport 

(Amarilio et al., 2005), microtubule organisation (Pennetta et al., 2002), lipid transport 

and metabolism (Peretti et al., 2008), Ca
2+

 homeostasis (De Vos et al., 2012), and the 

UPR in response to ER stress (Gkogkas et al., 2008; Kanekura et al., 2006; Langou et 

al., 2010; Suzuki et al., 2009). Furthermore, a cleaved and secreted VAPB fragment acts 

as a ligand for ephrin receptors (Han et al., 2012; Tsuda et al., 2008). To carry out these 

functions, VAPB interacts with several proteins including soluble N-ethylmaleimide-
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sensitive factor-attached protein receptor (SNARE) proteins (Skehel et al., 1995), two 

phenylalanines (FF) in acidic tract (FFAT) motif-containing proteins (Amarilio et al., 

2005), microtubules (Pennetta et al., 2002; Skehel et al., 2000), protein tyrosine 

phosphatase-interacting protein 51 (PTPIP51) (De Vos et al., 2012), activating 

transcription factor 6 (ATF6) (Gkogkas et al., 2008) and some viral proteins 

(Hamamoto et al., 2005). 

A missense mutation in exon 2 of the VAPB gene on chromosome 20 that results 

in the substitution of a conserved proline for a serine at codon 56 in VAPB 

(VAPBP56S) causes heterogeneous MND, including slowly progressing adult onset 

autosomal dominant FALS type-8 (ALS8), ALS with rapid progression, and late-onset 

SMA (Nishimura et al., 2004). Although this mutation was initially believed to be 

limited to eight Brazilian families with a common founder (Nishimura et al., 2005), 

VAPBP56S was subsequently found in families of European and Japanese lineage 

(Funke et al., 2010; Millecamps et al., 2010). An additional mutation also within the 

MSP domain (VAPBT46I) in a British ALS patient has been reported, although this 

mutation has not conclusively been linked to FALS (Chen et al., 2010a). 

 

VAPBP56S aggregates and induces the formation of abnormal ER-derived 

inclusions (Fasana et al., 2010; Langou et al., 2010; Nishimura et al., 2004; Teuling et 

al., 2007; Tudor et al., 2010). The biological consequences of these inclusions and the 

mechanism by which VAPBP56S causes disease remain unclear. VAPBP56S may 

inhibit VAPB function by sequestering wild-type VAPB to the inclusions and 

preventing its interaction with other proteins (Kanekura et al., 2006; Mitne-Neto et al., 

2007; Ratnaparkhi et al., 2008; Suzuki et al., 2009; Teuling et al., 2007). Alternatively, 

VAPBP56S could be a toxic gain-of-function mutant because VAPBP56S 
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overexpression has been shown to induce the UPR (Gkogkas et al., 2008; Tsuda et al., 

2008). 

Below I summarise our current knowledge of the cellular functions of VAPB and 

the proposed mechanisms underlying VAPBP56S-related ALS. 

 

 
 

Figure 1.1. Domain organisation of VAPB. 

VAPB consists of an amino (N)-terminal major sperm protein domain (MSP), a central 

coiled-coil domain (CC) and a carboxyl (C)-terminal transmembrane domain (TM). The 

T46I and P56S mutations involved in ALS are indicated.  

 

1.2.1 Cellular functions of VAPB 

1.2.1.1 Role of VAPB in membrane fusion and vesicle trafficking 

Budding of vesicles, their transport between different organelles and the plasma 

membrane, and their fusion with an appropriate acceptor is controlled by several 

proteins (Spang, 2008; Verhage and Sørensen, 2008). SNARE proteins facilitate 

membrane fusion by coordinated co-operation with Rab GTPases and tethering 

complexes and are essential for vesicle docking and fusion of membrane layers (Söllner 

et al., 1993; Wickner, 2010). VAPB was identified as an interacting partner of the 

synaptic vesicle SNARE protein vesicle-associated membrane protein 
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(VAMP)/synaptobrevin in a yeast two-hybrid screen of Aplysia californica and was 

shown to be required for synaptic transmission in Aplysia sensory/motor neuron co-

cultures (Skehel et al., 1995). Human VAPB also interacts with VAMP in vitro 

suggesting that human VAPB might also play a role in vesicle dynamics and synaptic 

transmission (Weir et al., 1998).  

Several lines of evidence indicate that VAPB is involved in transport of vesicles 

between ER and Golgi and in intra-Golgi transport. Transport through the Golgi 

apparatus and from the Golgi to ER is mediated by coat protein I (COPI)-coated 

vesicles (Letourneur et al., 1994; Orci et al., 1997) whereas transport from ER to Golgi 

is mediated by coat protein II (COPII)-coated vesicles via the ER-Golgi intermediate 

compartment (ERGIC) (Barlowe et al., 1994; Campbell and Schekman, 1997). VAPB 

has been shown to colocalise with COPI vesicles, ERGIC-53 and the COPII vesicle 

marker secretion-defective 23 (Sec23) (Moumen et al., 2011; Tran et al., 2012). 

Administration of anti-VAPB antibodies in in vitro transport assays inhibited retrograde 

intra-Golgi transport and caused the accumulation of COPI-coated vesicles (Soussan et 

al., 1999). siRNA-mediated depletion of VAPB expression caused ERGIC membrane 

expansion and mislocalisation of ERGIC-53, and the nuclear envelope membrane 

proteins nucleoporins (Nups) and Emerin (EMD) (Tran et al., 2012). VAPB also has 

been shown to interact with the FFAT motif-containing N-terminal domain-interacting 

receptor (Nir) proteins Nir2 and Nir3 (Amarilio et al., 2005; Loewen et al., 2003). Nir2 

is a Golgi and ER membrane-associated protein that binds to the MSP domain of VAPB 

via its FFAT motif (Amarilio et al., 2005; Kaiser et al., 2005; Litvak et al., 2002). 

Overexpression of VAPB and Nir2 in cultured cells results in remodelling of the ER 

into stacked membrane arrays and attenuates protein export from the ER to the Golgi 

apparatus (Amarilio et al., 2005).   
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1.2.1.2 Role of VAPB in microtubule organisation 

Microtubules are essential for several intracellular transport processes but also 

control cell shape and the localisation, shape, support, and arrangement of intracellular 

organelles (Brownhill et al., 2009; Kapitein and Hoogenraad, 2011; Poulain and Sobel, 

2010; Vedrenne and Hauri, 2006). VAPB has been shown to interact with microtubules 

either directly or indirectly in light and electron microscopy studies and in in vitro 

binding assays (Amarilio et al., 2005; Pennetta et al., 2002; Skehel et al., 2000). 

Through its interaction with microtubules, VAPB influences the neuromuscular junction 

in Drosophila melanogaster (Pennetta et al., 2002) and ER structure in cell line 

(Amarilio et al., 2005). The Drosophila homolog of VAPB, DVAP-33, is essential for 

microtubule integrity and synaptic homeostasis in presynaptic terminals (Pennetta et al., 

2002). DVAP-33 regulates bouton size and number at larval neuromuscular junctions in 

a dosage-dependent manner via association with the synaptic microtubule cytoskeleton 

(Pennetta et al., 2002). VAPB indirectly binds to microtubules via Nir3. Association of 

VAPB with Nir3 enhances microtubule stability and causes gross rearrangement of the 

ER and microtubule network in cultured cells (Amarilio et al., 2005).  

 

1.2.1.3 Role of VAPB in lipid transport and metabolism 

The unique lipid composition of organelle membranes is critical for cell function. 

Membrane lipids influence the physical properties of membranes and they also have a 

role in signalling pathways (Holthuis et al., 2003; Sprong et al., 2001). VAPB binds to 

the FFAT motif-containing lipid transferring, binding and sensing proteins Nir2, 

oxysterol binding protein (OSBP), and ceramide transfer protein (CERT) (Amarilio et 

al., 2005; Kawano et al., 2006; Loewen et al., 2003). The VAPB-FFAT motif 
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interaction is essential for lipid transfer between the ER and Golgi, and also for lipid 

metabolism (Loewen et al., 2003; Peretti et al., 2008). Lipids are transported by 

vesicular and non-vesicular mechanisms between the cellular membranes. Non-

vesicular transport of lipids occurs at membrane contact sites between intracellular 

organelles (Lev, 2010). Although VAPB is clearly implicated in vesicular transport (see 

section 1.2.1.1), it has been proposed that VAPB is also a key player in the coordination 

of ER-Golgi membrane contact sites and non-vesicular lipid transport (Peretti et al., 

2008). In this respect it is interesting to note that VAPB has also been found at ER-

mitochondria contact sites (De Vos et al., 2012) (also see section 4.2.6). In mammalian 

cells, ceramide and phosphatidylinositol are synthesised in the ER and transported to 

Golgi through ER-Golgi membrane contact sites by CERT and Nir2, respectively 

(Hanada et al., 2003; Peretti et al., 2008). Ceramide is then converted to sphingomyelin 

and phosphatidylinositol to phosphatidylinositol-4-phosphate in the Golgi membrane 

(Balla and Balla, 2006; Yamaoka et al., 2004). VAPB recruits Nir2, OSBP and CERT to 

the ER-Golgi membrane contact sites where these proteins facilitate lipid transfer 

between the ER and Golgi membranes (Peretti et al., 2008). Depletion of VAPB results 

in reduced sphingomyelin and phosphatidylinositol-4-phosphate levels in Golgi, 

showing that VAPB regulates the lipid composition of Golgi membranes and 

subsequently the structure of the Golgi apparatus (Peretti et al., 2008).  

VAPB also regulates lipid metabolism in yeast. The VAPB homologue in yeast is 

called suppressor of choline sensitivity 2 (Scs2). Scs2 binds to the FFAT motif 

containing protein overproducer of inositol 1 (Opi1) (Gavin et al., 2002; Loewen et al., 

2003). Opi1 is a transcription regulator specific for phospholipid synthesis. Opi1 is 

activated when inositol levels are high and negatively regulates the expression of 

inositol-1-phosphate synthase. During inositol starvation Opi1 is inactivated and binds 
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to Scs2. Thus, it has been suggested that Scs2 regulates inositol metabolism by binding 

to Opi1 (Brickner and Walter, 2004; Kagiwada et al., 1998; Loewen et al., 2003; 

Nikawa et al., 1995).  

 

1.2.1.4 Role of VAPB in Ca
2+

 homeostasis 

In addition to ER-Golgi apparatus contacts, membrane contact sites also have 

been described between ER and mitochondria (Hayashi et al., 2009). Both ER and 

mitochondria are Ca
2+

 stores and their membrane contact sites have important roles in 

Ca
2+

 exchange between the two organelles (Csordás et al., 2006; Csordás et al., 2010; de 

Brito and Scorrano, 2008; Rizzuto et al., 1998). Approximately 5 to 20% of 

mitochondrial membranes are in close apposition with ER membranes (Rizzuto et al., 

1998). We have shown that VAPB binds to the outer mitochondrial membrane protein 

PTPIP51 (De Vos et al., 2012). Overexpression of PTPIP51 increases the amount of 

mitochondria-associated VAPB whereas decreasing the levels of PTPIP51 with small 

interfering RNAs reduces the amount of mitochondria-bound VAPB. Moreover, 

depletion of VAPB or PTPIP51 disrupts Ca
2+

 homeostasis by slowing down 

mitochondrial Ca
2+

 uptake following transient Ca
2+

 release from ER stores (De Vos et 

al., 2012). Also overexpression of VAPBP56S increases [Ca
2+

]c in motor neurons 

(Langou et al., 2010).  

 

1.2.1.5 The role of VAPB in the UPR 

Increased trafficking of proteins through the ER or insults that affect protein 

folding in the ER (e.g. mutant proteins) can cause imbalances that affect the folding 
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capacity of the ER which leads to ER stress. To sense ER stress, eukaryotic cells have 

pathways termed the UPR (Bernales et al., 2006; Lin et al., 2008). The UPR senses ER 

stress and the accumulation of unfolded proteins in the ER and then activates pathways 

that include transcriptional changes which adjust the ER protein folding capacity to 

rectify the stress. 

There are three major branches to the UPR. Each of these branches involves 

different ER resident proteins that sense ER stress and the presence of incorrectly folded 

proteins. These proteins are inositol-requiring protein 1 (IRE1), double stranded RNA 

activated protein kinase-like endoplasmic reticulum kinase (PERK) and ATF6. These 

proteins all contain domains that protrude into the ER lumen so as to sense ER stress 

and also have cytosolic effector domains (Bernales et al., 2006; Lin et al., 2008). 

A number of lines of evidence suggest that VAPB functions in the UPR, but the 

precise details are unclear and there are some inconsistencies in reports from different 

groups. Thus, in some reports overexpression of VAPB has been shown to promote 

UPR whereas siRNA knockdown of VAPB blocks activation of UPR in response to 

chemically induced ER stress (Kanekura et al., 2006; Langou et al., 2010; Moumen et 

al., 2011). Moreover, this role of VAPB in the UPR has been shown to involve IRE1 

and X-box binding protein-1 (XBP1) signalling (Kanekura et al., 2006; Suzuki et al., 

2009). By contrast, another group has shown that VAPB binds to ATF6 and 

overexpression of VAPB blocks UPR via an effect on ATF6 (Gkogkas et al., 2008). 

VAPB overexpression has also been shown to cause an inhibitory effect on the ubiquitin 

proteosome system and VAPB also interacts with the 20S subunit of the proteosome but 

how these two features are linked is unclear (Moumen et al., 2011). 
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1.2.1.6 Role of VAPB in receptor signalling 

Secreted forms of VAPB involving a cleaved region containing the MSP domain 

have been observed in Drosophila, C. elegans and in human serum (Han et al., 2012; 

Tsuda et al., 2008). This cleavage occurs between the MSP and coiled-coil domains of 

VAPB by an unknown mechanism (Gkogkas et al., 2011; Tsuda et al., 2008). These 

secreted MSP domains of Drosophila and C. elegans have been shown to function as 

ligands for ephrin receptors (EphRs), sensory axon guidance-3 receptor Roundabout 

(SAX-3 Robo) receptors and caterpillar-like receptor-1 leukocyte common antigene-

related-like (CLR-1 Lar) receptors (Han et al., 2012; Tsuda et al., 2008). EphR, SAX-3 

Robo and CLR-1 Lar are located in neuronal growth cones and are involved in axon 

guidance (Chang et al., 2004; Sun et al., 2000; Wang and Anderson, 1997). 

Furthermore, Han and co-workers have demonstrated that the secreted MSP domain of 

VAPB influences mitochondrial localisation in striated muscles via SAX-3 Robo and 

CLR-1 Lar receptors (Han et al., 2012). Signalling via these receptors promotes actin 

remodelling in an actin-related protein (ARP)2/3 dependent way and shifts the 

localisation of mitochondria to actin rich muscle izotrope (I)-bands (Han et al., 2012). 

Therefore, it is possible that MSP signalling through EphR, SAX-3 Robo and CLR-1 

Lar can influence mitochondrial localisation not only in neurons but also in muscles. 

Interestingly, the MSP domain of VAPB is also detectable in mammalian serum (Tsuda 

et al., 2008). However, whether these secreted MSP domains in mammalian VAPB also 

function in pathways related to those described Drosophila and C. elegans is unclear.  
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1.2.2 ALS-associated mutations in VAPB 

Two different mutations in VAPB have been described that are associated with 

ALS. The first leads to a proline to serine substitution at position 56 (VAPBP56S); the 

second leads to a threonine to isoleucine substation at position 46 (VAPBT46I) (Chen et 

al., 2010a; Nishimura et al., 2004). Both of these mutations are thus closely located and 

effect conserved residues within the MSP domain. However, whilst there is strong 

genetic evidence that the VAPBP56S mutation is linked to ALS, the VAPBT46I 

mutation has been described in only one ALS patient (Chen et al., 2010a). Most studies 

have thus focused on VAPBP56S. 

The VAPBP56S mutation leads to alterations in the secondary and tertiary 

structure of the MSP domain and causes destabilisation of its hydrophobic core 

(Nishimura et al., 2004; Shi et al., 2010). These structural changes in the MSP domain 

result in the exposure of hydrophobic patches to the cytoplasm and the loss of the native 

MSP structure (Kim et al., 2010). Expression of VAPBP56S in mammalian cells 

induces the formation of ubiquitinated cytoplasmic aggregates (Kanekura et al., 2006; 

Langou et al., 2010; Nishimura et al., 2004; Teuling et al., 2007; Tsuda et al., 2008; 

Tudor et al., 2010). Additionally, VAPBP56S recruits wild-type VAPB in these 

cytoplasmic aggregates which results in Golgi fragmentation and cell death (Kanekura 

et al., 2006; Langou et al., 2010; Ratnaparkhi et al., 2008; Teuling et al., 2007; Tsuda et 

al., 2008). The oligomerisation of wild-type VAPB and VAPBP56S is driven by the 

interaction of the coiled-coil and transmembrane domains (Kanekura et al., 2006; Kim 

et al., 2010; Teuling et al., 2007).  

To date, only one transgenic VAPBP56S mouse model has been reported (Tudor 

et al., 2010). Even though VAPBP56S aggregates are present in the brain and spinal 
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cord, these mutant transgenic mice do not show neurological or motor dysfunction and 

have a normal life span (Tudor et al., 2010). Nevertheless, from 18 month of age 

onward these animals display TDP-43 and ubiquitin positive inclusions in the cytoplasm 

of spinal cord motor neurons suggesting that there is a link between VAPBP56S and 

TDP-43 pathology (Tudor et al., 2010). How VAPBP56S induces TDP-43 pathology is 

not clear, but VAPBP56S has been shown to enhance TDP-43 induced cell toxicity via 

a process that involves Bcl-2-interacting mediator of cell death (Bim) and Bcl-2-

associated X protein (Bax) (Suzuki and Matsuoka, 2011).  

How VAPBP56S causes motor neuron disorders is not known but both loss-of-

function and toxic gain-of-function mechanisms have been proposed. In support of a 

loss-of-function mechanism, VAPBP56S has been shown to disturb several cellular 

functions of VAPB, most likely by sequestering wild-type VAPB into insoluble 

aggregates or by altering VAPB binding to other proteins. Thus, VAPBP56S has 

reduced ability to interact with FFAT motif containing proteins Nir2, OSBP related 

protein (ORP) 3, 6 and 9 (Teuling et al., 2007). Similarly, VAPBP56S does not interact 

properly with microtubules in vitro (Mitne-Neto et al., 2007). In addition, lower levels 

of VAPB mRNA are seen in spinal cords of ALS patients which also lends support for a 

loss-of-function hypothesis for VAPB in ALS (Anagnostou et al., 2010). 

Overexpression of VAPBP56S also results in nuclear envelope swelling and 

mislocalisation of the nuclear envelope resident proteins Nups and EMD (Tran et al., 

2012). Similar Nups and EMD mislocalisation has been observed following depletion of 

wild-type VAPB (see section 1.2.1.1) also suggesting that VAPBP56S is a loss-of-

function mutant in Nups and EMD transport (Tran et al., 2012). VAPBP56S is resistant  
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to proteolysis and thus its MSP domain fails to be secreted and consequently does 

not signal via EphR, SAX-3 Robo and CLR-1 Lar (Gkogkas et al., 2008; Han et al., 

2012; Tsuda et al., 2008).  

The effect of VAPBP56S on the UPR is contradictory. In some studies, it has 

been shown that VAPBP56S inhibits the UPR by inhibition of the IRE1/XBP1 and the 

ATF6 UPR pathways (Gkogkas et al., 2008; Kanekura et al., 2006). In contrast, others 

have found that VAPBP56S overexpression increases CCAAT/enhancer binding protein 

homologous protein (CHOP) and GRP78/BiP levels and IRE1 phosphorylation, 

suggesting that VAPBP56S induces ER-stress and the UPR, and arguing for a gain-of-

function mechanism (Langou et al., 2010; Moumen et al., 2011; Tsuda et al., 2008).  

Finally, VAPB has been shown to interact with the outer mitochondrial membrane 

protein PTPIP51 and VAPBP56S binds more strongly to PTPIP51 than wild-type 

VAPB (De Vos et al., 2012). The VAPB-PTPIP51 interaction impacts on cellular Ca
2+

 

handling by influencing mitochondrial Ca
2+

 uptake following Ca
2+

 release from ER 

stores (De Vos et al., 2012). The stronger binding of VAPBP56S to PTPIP51 thus 

disrupts Ca
2+

 exchange between ER and mitochondria (De Vos et al., 2012). Impaired 

mitochondrial Ca
2+

 handling and buffering is also observed in mutant SOD1 models 

(Grosskreutz et al., 2007; Jaiswal et al., 2009; Manfredi and Xu, 2005). Perturbed 

mitochondrial Ca
2+

 handling and increased [Ca
2+

]c could be pathogenic in ALS by 

affecting axonal transport, protein folding or inducing excitotoxicity (also see section 

1.1.3.3, 1.1.3.7). 

There is evidence that VAPBT46I has some similar pathogenic features to 

VAPBP56S. Thus VAPBT46I forms ubiquitinated cytosolic protein aggregates and 

causes ER fragmentation and inhibits the IRE1/XBP1 UPR pathway to induce cell death 

(Chen et al., 2010a).  
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1.3 Axonal transport of mitochondria 

Mitochondria play a key role in cellular functions such as ATP synthesis, lipid 

metabolism, apoptosis initiation and Ca
2+

 homeostasis (Saxton and Hollenbeck, 2012). 

Therefore, the exact and appropriate positioning of mitochondria is essential in all cells 

but especially in such large, highly polarised cells such as neurons. Active transport 

allows mitochondria to locate to neuronal cell areas where they are most needed (e.g. 

the growth cone, nodes of Ranvier, pre- and postsynaptic terminals) and docking 

proteins anchor them at these special locations. Thus, the movement of mitochondria 

through neurons is regulated so that they can locate to regions in response to 

physiological stimuli. The mechanisms that drive and regulate mitochondrial transport 

are thus discussed below.  

 

1.3.1 Mitochondrial molecular motors 

The major mechanism for transport of mitochondria through axons involves 

movement along microtubules by kinesin-1 and cytoplasmic dynein-1 molecular 

motors. Kinesin-1 drives anterograde and dynein retrograde transport of mitochondria 

through axons (for reviews see (Hirokawa et al., 2010; Saxton and Hollenbeck, 2012)).  

 

1.3.1.1 Mitochondrial kinesin and adaptor proteins 

There are 45 different kinesins in the mouse kinesin superfamily and these have 

been classified into 15 different families (Hirokawa et al., 2009; Lawrence et al., 2004). 

Kinesin-1 is the main molecular motor that drives anterograde axonal transport of 
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mitochondria (Cai et al., 2005; Fransson et al., 2006; Glater et al., 2006; Hurd and 

Saxton, 1996; Pilling et al., 2006; Tanaka et al., 1998). In mammals, there are three 

kinesin-1 isoforms each encoded by different genes (kinesin-1A, B and C). Kinesin-1A 

and kinesin-1C are neuron specific whereas kinesin-1B is expressed in all cell-types 

(Kanai et al., 2000). 

Most functional kinesin-1 comprises a heterotetramer of two kinesin-1 motor 

proteins and two kinesin-1 light chain (KLC) proteins. Kinesin-1 contains ATPase 

activity and uses the chemical energy of ATP to drive conformational changes that 

generate motile force. Some cargoes bind directly to kinesin-1 but most bind to KLCs; 

thus the KLCs act as adaptor proteins to link cargoes to kinesin-1 motors (Hirokawa et 

al., 2009). However, transport of mitochondria is now known to not involve KLCs. 

Rather mitochondria attach to kinesin-1 motors via two other sets of proteins termed 

mitochondrial Rho GTPase (Miro) and trafficking kinesin (TRAK) also known as 

Milton in Drosophila (for review see (Saxton and Hollenbeck, 2012)). 

Miro was originally discovered in yeast as a protein affecting proteinase A 

secretion (Wolff et al., 1999). Later studies have revealed that Miro is an outer 

mitochondrial membrane protein involved in mitochondrial transport and morphology 

in yeast (Frederick et al., 2004), Drosophila (Guo et al., 2005) and mammals (Fransson 

et al., 2003). Miro consists of two GTPase domains, two central Ca
2+

 binding E-helix-

loop-F-helix (EF-hand) domains and a C-terminal transmembrane domain that anchors 

it in the outer mitochondrial membrane (Fransson et al., 2003; Frederick et al., 2004; 

Wolff et al., 1999). In Drosophila, one Miro orthologue has been identified (Fransson et 

al., 2003; Guo et al., 2005) which binds TRAK to connect mitochondria to kinesin-1 

(Glater et al., 2006). Mutation of Drosophila Miro causes impaired mitochondrial 

distribution in neurons of Drosophila larvae indicating the essential role of Miro in 
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mitochondrial transport (Guo et al., 2005). In mammals, two Miro homologues Miro1 

and Miro2 have been described (Fransson et al., 2003). Mammalian Miro is directly 

associated with TRAK (Fransson et al., 2006; MacAskill et al., 2009a) and kinesin-1 

(MacAskill et al., 2009b; Wang and Schwarz, 2009). Depletion of mammalian Miro by 

RNA interference in a cell line and in hippocampal neurons reduces mitochondrial 

transport (MacAskill et al., 2009b; Saotome et al., 2008). Moreover, the first GTPase 

domain and the EF-hand domains of Miro seem important for normal mitochondrial 

distribution and transport in hippocampal neurons and cell lines (Fransson et al., 2006; 

MacAskill et al., 2009b; Saotome et al., 2008; Wang and Schwarz, 2009).  

TRAK is a member of an evolutionary conserved coiled-coil domain protein 

family (Beck et al., 2002; Iyer et al., 2003). TRAK was originally described as a protein 

required for normal mitochondrial distribution in Drosophila photoreceptors (Stowers et 

al., 2002). TRAK binds to Miro in both Drosophila and mammals (Glater et al., 2006; 

Wang and Schwarz, 2009). In addition, TRAK is also associated with the C-terminus of 

kinesin-1 providing a link between the motor protein and mitochondria (Glater et al., 

2006; Stowers et al., 2002; Wang and Schwarz, 2009). Null mutations in TRAK 

selectively alter mitochondrial distribution in Drosophila (Glater et al., 2006; Górska-

Andrzejak et al., 2003; Stowers et al., 2002) suggesting a role for TRAK in 

mitochondrial transport. In mammals, two TRAK orthologues have been identified: 

TRAK1 (also known as β-O-linked N-acetylglucosamine transferase-interacting protein 

(OIP) 106) (Iyer et al., 2003) and TRAK2 (also termed OIP98 or GABAA receptor-

interacting factor-1 (GRIF-1)) (Beck et al., 2002). TRAK is involved in intracellular 

transport of endosomes, ion channels and mitochondria (Brickley and Stephenson, 

2011; Grishin et al., 2006; Kirk et al., 2006; MacAskill et al., 2009a; Webber et al., 

2008). In mammals, TRAK binds to mitochondria indirectly via interaction with Miro 
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and for this interaction the residues 476-700 of TRAK, and the N-terminal GTPase 

domain of Miro are essential (Fransson et al., 2006; MacAskill et al., 2009a). Although 

a second mitochondrial receptor for TRAK has not been identified, it has been shown 

that TRAK is able to bind to mitochondria in a Miro-independent way (Koutsopoulos et 

al., 2010). TRAK also associates with kinesin-1 and this interaction occurs between the 

C-terminal cargo binding domain of kinesin-1 and the N-terminal coiled-coil domain of 

TRAK (Brickley et al., 2005; Pozo and Stephenson, 2006.; Smith et al., 2006). 

Mitochondrial transport is highly dependent on availability of TRAK. Depletion of 

TRAK levels by RNA interference or using dominant negative TRAK constructs, that 

bind to mitochondria but not to kinesin-1, decreases mitochondrial mobility in rat 

hippocampal neurons (Brickley and Stephenson, 2011; MacAskill et al., 2009a).  

Thus, mitochondria are mainly transported anterogradely through axons via 

kinesin-1. Although the precise mechanism is not clear, mitochondria attach to kinesin-

1 via TRAK and Miro. According to one model, Miro binds directly to kinesin-1 

(MacAskill et al., 2009b). In another model, Miro binds to kinesin-1 indirectly via 

TRAK (Wang and Schwarz, 2009) (Figure 1.2). 
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Figure 1.2 Models of attachment of kinesin-1 to mitochondria. 

(A) Kinesin-1 is associated with TRAK which in turn binds to the outer mitochondrial 

membrane protein Miro. (B) Kinesin-1 binds directly to Miro independently of TRAK. 
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Syntabulin, fasciculation and elongation protein zeta-1 (FEZ1) and Ras-related 

nuclear protein-binding protein 2 (RanBP2) also have been proposed as mitochondrial 

kinesin-1 adaptor proteins but they are not as well studied as Miro and TRAK.  

Syntabulin has been identified as an interacting partner of syntaxin-1, a key 

protein of the membrane fusion machinery at the presynaptic plasma membrane (Su et 

al., 2004). In neurons, syntabulin also binds to kinesin-1 and partially associates to 

mitochondria via its C-terminal (Cai et al., 2005; Su et al., 2004). Depletion of 

syntabulin or disruption of syntabulin-kinesin-1 interaction in neurons reduces the 

number of mitochondria in axons and selectively perturbs anterograde mitochondrial 

transport (Cai et al., 2005; Ma et al., 2009).  

FEZ1 (also known as uncoordinated (UNC)-76) is a coiled-coil protein involved 

in neuronal development and axonal outgrowth (Maturana et al., 2010). FEZ1 binds to 

kinesin-1 in neurons (Fujita et al., 2007; Gindhart et al., 2003). Moreover, FEZ1 also 

associates to mitochondria in a cell line and its depletion by RNA interference disrupts 

anterograde mitochondrial transport in a cell line and hippocampal neurons (Fujita et al., 

2007; Ikuta et al., 2007).  

RanBP2 has been implicated in nuclear import and export (Melchior et al., 1995; 

Villa Braslavsky et al., 2000). RanBP2 binds to kinesin-1B and C via its kinesin-

binding domain and has been shown to act as an allosteric activator of kinesin-1B (Cai 

et al., 2001; Cho et al., 2009). It has been demonstrated that blocking RanBP2 kinesin-1 

interaction causes perinuclear mitochondrial clustering in neuron-like cell lines (Cho et 

al., 2007). However, the effect of RanBP2 on axonal mitochondrial transport has not 

been investigated.  

Although kinesin-1 is the main anterograde mitochondrial motor protein, there is 

also evidence that the kinesin-3 family member KIF1Bα and kinesin-like protein-6 
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(KLP6) may also contribute to mitochondrial transport (Nangaku et al., 1994; Tanaka et 

al., 2011; Wozniak et al., 2005).  

KIF1Bα is a monomeric mitochondrial kinesin in neurons. It is enriched in brain 

tissue and localises to mitochondria in vivo (Nangaku et al., 1994). The role of KIF1Bα 

in mitochondrial transport has been demonstrated in in vitro motility assays and cell 

lines (Nangaku et al., 1994; Tanaka et al., 2011; Wozniak et al., 2005). KIF1 binding 

protein (KBP) has been identified as interacting partner of KIF1Bα by Wozniak and co-

workers (Wozniak et al., 2005). KBP is also co-localised with mitochondria but it does 

not mediate KIF1Bα-mitochondria interaction. At the same time KBP increases KIF1Bα 

motility in vitro and required for appropriate mitochondrial distribution (Wozniak et al., 

2005).   

KLP6 localises to mitochondria in C. elegans and in neuronal and non-neuronal 

cell lines, and its mutation perturbs mitochondrial transport in a neuronal cell line 

(Tanaka et al., 2011). To date, it is not known how KIF1Bα and KLP6 bind to 

mitochondria and their role in anterograde mitochondrial transport requires further 

investigation.  

 

1.3.1.2 Mitochondrial cytoplasmic dynein motor complex 

The retrograde transport of mitochondria is less well understood than their 

anterograde transport. Although most kinesins move towards the plus end of 

microtubules, a few move towards the minus end (kinesin-14B family members) 

(Hirokawa et al., 2009). There is no evidence for a role of a minus end-directed kinesin 

in mitochondrial transport. Therefore, it is generally accepted that microtubule-based 

retrograde mitochondrial transport is mediated by the cytoplasmic dynein-1-dynactin 
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complex. Interestingly, cytoplasmic dynein-1 driven retrograde mitochondrial transport 

requires functioning kinesin, possibly because dynein is associated with mitochondria 

during its transport to the cell periphery (Hirokawa et al., 1990; MacAskill et al., 2009b; 

Pilling et al., 2006).   

Mitochondria purified from Drosophila brain have been shown to be associated 

with dynein heavy chain and dynactin subunits p50 and p150
Glued

 (Pilling et al., 2006). 

Moreover, a mutation in dynein heavy chain inhibits dynein function and halts 

retrograde mitochondrial transport in cultured Drosophila neurons (Pilling et al., 2006). 

In mammals, association of cytoplasmic dynein-1 with mitochondria has been shown in 

ligated mouse peripheral nerves by immuno-electron microscopy (Hirokawa et al., 

1990).   

How cytoplasmic dynein-1 binds to mitochondria remains to be elucidated. A 

possible linker between dynein and mitochondria is Miro. It has been shown that 

overexpression or loss of Miro in Drosophila alters not only anterograde but also 

retrograde mitochondrial transport (Russo et al., 2009). However, the evidence for 

direct interaction between Miro and dynein is missing to date. The dynein light chain t-

complex testis-specific protein 1 (Tctex1) has been identified to interact with the outer 

mitochondrial membrane protein VDAC in the yeast two-hybrid system suggesting 

another possible linkage point between mitochondria and dynein (Schwarzer et al., 

2002).  
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1.3.2 Mitochondrial anchors 

When mitochondria have been delivered to the region where they are needed (e.g. 

growth cones, nodes of Ranvier, pre- and postsynaptic terminals) they often spend an 

extended period of time in those areas. Indeed, in axons, the majority of mitochondria 

are stationary most of the time (~60-80% of all mitochondria) (Kang et al., 2008; Morris 

and Hollenbeck, 1993).  

Syntaphilin has been identified as a microtubule bound mitochondrial docking 

protein that halts mitochondrial movement (Kang et al., 2008). Syntaphilin is anchored 

into the outer mitochondrial membrane by its C-terminal transmembrane domain and 

binds to microtubules via its N-terminus. Interestingly, its interaction with microtubules 

is enhanced by dynein light chain LC8 which binds directly to syntaphilin (Chen et al., 

2009). It has been shown that overexpression of syntaphilin immobilises almost all 

mitochondria whereas deletion of the syntaphilin gene increases the number of motile 

mitochondria (Kang et al., 2008). Since syntaphilin selectively localises to stationary 

mitochondria its main role is probably mitochondrial docking in neurons (Kang et al., 

2008).  

Mitochondria are also tethered to neurofilaments and intermediate-filaments 

(Leterrier et al., 1994; Reipert et al., 1999; Toh et al., 1980; Wagner et al., 2003; Winter 

et al., 2008). Neurofilament associated mitochondria are probably not transported along 

neurofilaments since disruption of both microtubule and actin filaments cytoskeleton 

eliminates mitochondrial transport in neurons (Morris and Hollenbeck, 1995). The only 

protein that has been shown to act as a linker between intermediate filaments and 

mitochondria is plectin 1b (Reipert et al., 1999; Winter et al., 2008). Interestingly, 

neurofilament based mitochondrial docking is highly dependent on mitochondrial 
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membrane potential. Mitochondria with high membrane potential bind more frequently 

to neurofilaments than mitochondria with low membrane potential (Wagner et al., 

2003).  

 

1.3.3 Regulation of mitochondrial transport in neurons 

Mitochondrial transport and docking are highly regulated mechanisms in both 

neuronal and non-neuronal cells. Several mechanisms for controlling mitochondrial 

transport have now been identified. These include alterations in [Ca
2+

]c levels, turnover 

of Miro, alterations in mitochondrial function and ATP/ADP levels, microtubule 

modifications and phosphorylation of kinesin-1.  

 

1.3.3.1 Intracellular Ca
2+

 and mitochondrial transport 

One of the main activity dependent regulatory signals for mitochondrial transport 

is intracellular Ca
2+

. Increased [Ca
2+

]c arrests mitochondrial motility (Chang et al., 

2006; MacAskill et al., 2009b; Rintoul et al., 2003; Saotome et al., 2008; Wang and 

Schwarz, 2009; Yi et al., 2004). Three groups have shown independently that Miro is 

the molecule that mediates the effect of Ca
2+

 on mitochondrial motility and in particular 

that it the Miro EF-hand domains (MacAskill et al., 2009b; Saotome et al., 2008; Wang 

and Schwarz, 2009). Two models have been described for how Ca
2+

 affects Miro to halt 

mitochondrial transport (MacAskill et al., 2009b; Wang and Schwarz, 2009). Wang and 

Schwarz developed a model in which an increase in [Ca
2+

]c causes a conformational 

change in Miro that enables the N-terminal motor domain of TRAK-bound kinesin-1 to 

directly interact with Miro. Thus, the kinesin-1 motor domain is unavailable to bind to 
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and move along microtubules, effectively halting mitochondrial transport (Wang and 

Schwarz, 2009). In contrast, MacAskill et al. proposed that kinesin-1 directly binds to 

Miro independently of TRAK and that increased [Ca
2+

]c disrupts this interaction, thus 

releasing kinesin-1 into the cytosol and inhibiting mitochondrial transport (MacAskill et 

al., 2009b). Whichever of these two models proves right, it is clear that the EF-hand 

domains of Miro mediate Ca
2+

 dependent regulation of mitochondrial trafficking. 

Interestingly, not only cytosolic but also intra-mitochondrial Ca
2+

 levels are able to 

influence mitochondrial motility (Chang et al., 2011). It has been shown that 

mitochondrial Ca
2+

 levels correlate inversely with the speed but not with the direction of 

mitochondrial movement. Moreover, Miro regulates Ca
2+

 entry into mitochondria and 

this is dependent on its EF-hand domains (Chang et al., 2011). However, the exact 

mechanism by which intra-mitochondrial Ca
2+

 influences axonal mitochondrial 

transport remains to be elucidated.  

 

1.3.3.2 Turnover of Miro and mitochondrial transport 

Since Miro is required for attachment of mitochondria to kinesin-1 (see section 

1.3.1.1), the mechanisms that control the levels of cellular Miro protein are likely to 

influence mitochondrial transport. Recently, important advances have been made in 

understanding how Miro levels are regulated. This regulation involves two Parkinson’s 

disease linked proteins termed Parkin and phosphatase and tensin homologue-induced 

putative kinase protein-1 (PINK1). Mutations to the genes encoding Parkin and PINK1 

cause some familial forms of Parkinson’s disease (for review see (Thomas and Beal, 

2007)). 
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Parkin is an E3 ubiquitin ligase involved in targeting proteins for destruction via 

the proteasome and PINK1 is a serine/threonine kinase that localizes to mitochondria 

(Thomas and Beal, 2007). Moreover, there is evidence that Parkin and PINK1 functions 

may be linked and in particular, linked to mitochondrial function (Thomas and Beal, 

2007). A proteomic study initially identified PINK1 as being present in a multi-protein 

complex that included both Miro and TRAK (Weihofen et al., 2009). Recently, the 

implications of this finding have been comprehended more fully. PINK1 is now known 

to phosphorylate Miro so as to target it for destruction by the proteasome in a Parkin-

dependent manner (Wang et al., 2011). Thus, phosphorylation of Miro by PINK halts 

mitochondrial axonal transport by reducing Miro levels and mitochondrial association 

with kinesin-1. These findings have clear relevance for our understanding of 

Parkinson’s disease pathogenic mechanisms but also for other neurodegenerative 

diseases. 

 

1.3.3.3 Mitochondrial function, ATP/ADP levels and mitochondrial 

transport 

Another activity dependent regulatory signal for mitochondrial trafficking is the 

cellular ATP/ADP ratio. Mitochondria tend to accumulate in areas with high energy 

consumption suggesting that ATP consumption may regulate mitochondrial transport 

(Mironov, 2009; Morris and Hollenbeck, 1993; Ohno et al., 2011). Indeed, 

mitochondrial movement correlates with local intracellular ATP and ADP levels in 

neurons (Mironov, 2007; Mironov and Symonchuk, 2006). Mitochondrial motility is 

increased in areas with high ATP concentrations whereas mitochondrial mobility is 

decreased in the vicinity of active synapses or regions with high ADP levels (Mironov, 
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2007; Mironov and Symonchuk, 2006). Mitochondrial motility also depends on the 

activity of mitochondria. Analysis of mitochondrial transport revealed that the majority 

of mitochondria with high membrane potential are transported anterogradely whereas 

mitochondria with low membrane potential move retrogradely (Miller and Sheetz, 

2004). Reduced membrane potential leads to reduced ATP synthesis (Nicholls and 

Budd, 2000) therefore the selective retrograde transport of depolarised mitochondria 

may be linked to the reduced ATP synthesis in these mitochondria. Indeed, antimycin, a 

drug that reduces mitochondrial membrane potential and ATP production by blocking 

the mitochondrial electron transport chain, selectively increases retrograde 

mitochondrial transport (Hollenbeck et al., 1985; Miller and Sheetz, 2004). However, 

the exact mechanisms that are involved in the activity dependent regulation of 

mitochondrial transport and the related ATP/ADP sensors are not known.  

 

1.3.3.4 Microtubule modifications and mitochondrial transport 

Microtubule dynamics are regulated by microtubule-associated proteins (MAPs). 

MAP1, MAP2 and tau are the three major neuronal MAPs (Conde and Caceres, 2009; 

Dehmelt and Halpain, 2005). Tau stabilises microtubules, increases microtubule 

rigidity, induces microtubule bundles, and determines the spacing between microtubules 

(Dehmelt and Halpain, 2005). MAPs such as tau have been shown to affect kinesin-1 

based transport. Increased binding of tau to microtubules causes kinesin-1 to detach 

from microtubules more frequently, thus reducing the amount of anterograde transport 

of mitochondria (Ebneth et al., 1998; Stamer et al., 2002; Stoothoff et al., 2009). 

Likewise, MAP2 influences the frequency of attachment of kinesin to microtubules; 

increased binding of MAP2 to microtubules causes kinesin-1 to detach from 
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microtubules more frequently (Seitz et al., 2002). Interestingly, once kinesin is attached 

to microtubules, MAP2 does not affect the run length of the motor protein suggesting 

that MAP2 has a regulation role at the level of initial attachment at least in vitro (Seitz 

et al., 2002).  

In addition to MAPs, post-translational modifications of tubulin have also been 

shown to influence the interaction between kinesin and microtubules. Thus, the ability 

of kinesin-1 to bind to microtubules and in some cases move along microtubules is 

enhanced by tubulin acetylation, detyrosination and glutamylation (Cai et al., 2009; 

Dompierre et al., 2007; Dunn et al., 2008; Hammond et al., 2010; Ikegami et al., 2007; 

Konishi and Setou, 2009; Larcher et al., 1996; Liao and Gundersen, 1998; Reed et al., 

2006). 

 

1.3.3.5 Kinesin-1 phosphorylation and mitochondrial transport 

Phosphorylation of both kinesin-1 and KLC has been shown to regulate their 

functions (De Vos et al., 2000; Ichimura et al., 2002; Manser et al., 2011; Morfini et al., 

2006; Vagnoni et al., 2011). In particular, phosphorylation of kinesin-1 by c-Jun N-

terminal kinase (JNK) 3 on Ser176 has been shown to disrupt the interaction of kinesin-

1 with microtubules so as to disrupt axonal transport of cargoes, possibly including 

mitochondria (Morfini et al., 2006; Morfini et al., 2009).  
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1.4 Hypothesis and aims of thesis 

As detailed above, there is a considerable amount of evidence that damage to 

mitochondria and damage to axonal transport of mitochondria occur in ALS. In 

particular, several studies have shown that ALS mutant SOD1 damages axonal transport 

of mitochondria. The hypothesis that formed the basis of this thesis was that other 

genetic insults associated with ALS would also perturb mitochondrial transport. The 

aim of this thesis is to test this hypothesis further and in particular to test whether ALS 

mutant VAPBP56S damaged axonal transport of mitochondria, and if so, to gain insight 

into the underlying mechanisms of the damage. 
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2 MATERIALS AND METHODS 

Unless stated otherwise, all chemicals were purchased from Sigma-Aldrich Co. 

All solutions and buffers were prepared using ultrapure water (resistivity ≥ 18.2 MΩ-

cm) from an ELGA Purelab Ultra purification system (Veolia Water Systems Ltd., UK). 

When required, solutions were sterilised either by autoclaving for 20 minutes at 121 °C 

and 101 kPa or by filtration through a 0.2 μm pore size syringe filter (Nalgene).  

In the text, some commonly used organic compounds are referred to using their 

non-systematic instead of systematic names, according to the guidelines of the 

International Union of Pure and Applied Chemistry (Panico et al., 1993). All units are 

written according to the guidelines of the Bureau International des Poids et Mesures 

(International Bureau of Weights and Measures) (BIPM, 2006).   

 

2.1 Materials 

2.1.1 Stock solutions 

Acrylamide-bis-acrylamide (30%, 37:5:1 stabilised solution; Geneflow, UK) 

Ammonium persulphate (APS; 10% (w/v); Geneflow, UK) 

Ampicillin (100 mg/ml, filter sterilised) 

B27 supplement (100%; Invitrogen) 

β-mercaptoethanol (14.3 M) 

Bovine serum albumin (BSA; 5% (w/v))  

Calcium chloride (CaCl2; 1 M) 
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Dimethyl sulphoxide (DMSO; 100%) 

Dithiothreitol (DTT; 1 M) 

Ethanol (100%) 

Ethidium bromide (10 mg/ml) 

Ethylenediaminetetraacetic acid (EDTA; 0.5 M) 

Ethylene glycol-bis (β-aminoethylether) N,N,N',N'-tetraacetic acid (EGTA; 0.25 M) 

Fetal bovine serum (100%; Sera Laboratories) 

Formaldehyde (37% (w/v)) 

Fura2 solution ((1-[2-(5-carboxyoxazol-2-yl)-6-aminobenzofuran-5-oxy]-2-(2'-amino-

5'-methylphenoxy)-ethane-N,N,N',N'-tetraacetic acid); 1 mM in DMSO; Calbiochem) 

Glacial acetic acid (100%)  

Glycerol (80% (v/v), autoclaved) 

Hydrogen chloride (HCl; 1 M) 

Kanamycin (100 mg/ml, filter sterilised) 

K-HEPES ((4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid); 1 M; buffered with 

KOH to pH 7.4) 

Laminin from Engelbreth-Holm-Swarm murine sarcoma basement membrane (laminin; 

1 mg/ml) 

L-glutamine (200 mM; Invitrogen) 

Magnesium chloride (MgCl2; 1 M) 

Methanol (100%)  
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MitoTracker Red CMXRos (1 mM in DMSO; Invitrogen) 

Na-HEPES buffered with NaOH to pH 7.4 

Penicillin (10,000 IU/ml) and streptomycin (10 mg/ml; PAA Laboratories) 

Percoll (100%) 

Phosphate-buffered saline (PBS; 137 mM NaCl; 2.7 mM KCl; 0.7 mM KH2PO4; 4 mM 

Na2HPO4)  

Poly-DL-ornithine hydrobromide (ornithine; MW 3,000-15,000; 1.5 mg/ml) 

Poly-L-lysine hydrobromide (MW 70000-150000; 0.1% (w/v)) 

Potassium acetate (CH3COOK; 5 M) 

Potassium chloride (KCl; 5 M) 

Potassium hydroxide (KOH; 1M) 

RNase A (10 mg/ml in Tris-EDTA) 

Sodium dodecyl sulphate (SDS; 10% (w/v)) 

Sodium chloride (NaCl; 5 M) 

Sodium deoxycholate (10% (w/v)) 

Sodium hydroxide (NaOH; 10 M) 

Sodium hydrogencarbonate (NaHCO3; 1 M) 

Sodium pyruvate (100 mM) 

TEMED (N,N,N',N'-tetramethylethylenediamine; 100%) 

Trypsin-EDTA solution (1x; 0.05% trypsin, 0.02% EDTA in PBS; PAA Laboratories) 

Tris-buffered saline (TBS; 20 mM Tris (tris(hydroxymethyl)aminomethane); 137 mM 
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NaCl; buffered with HCl to pH 7.6) 

Citric acid (1 M) 

Tris-citrate (1 M Tris; buffered with citric acid to pH 7.4) 

Tris-EDTA (TE; 10 mM Tris, 1 mM EDTA; buffered with NaOH to pH 8.0) 

Tris-HCl (1.5 M Tris, buffered with HCl to pH 8.8) 

Tris-HCl (0.5 M, buffered with HCl to pH 6.8) 

Triton X-100 (100%) 

Tween-20 (100%) 

 

2.1.2 General microbiology reagents 

2.1.2.1 Plasmids 

Vectors and expression plasmids are listed in Table 2.1 and 2.2 below.   

 

Table 2.1 Vectors 

Vector Vector used Supplier 

pCI-neo Mammalian expression vector Promega 

pcDNA3.1 Mammalian expression vector Invitrogen 

pRK5 Mammalian expression vector BD Biosciences 
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Table 2.2 Expression plasmids 

Protein expressed 
Vector 

backbone 
Reference or source of plasmid 

EGFP pEGFP-C1 Clontech 

DsRed-Mito pDsRed Clontech 

EGFP-VAPB pEGFP-C1 Dr Kwok-Fai Lau (KCL, UK) 

EGFP-VAPBP56S pEGFP-C1 Dr Kwok-Fai Lau (KCL, UK) 

HA-TRAK1 pRK5 

Prof Pontus Aspenström (Ludwig Institute for 

Cancer Research, Uppsala University, 

Uppsala, Sweden); (Fransson et al., 2006) 

mCherry-α-tubulin pcDNA3.1 
Prof Frederic Saudou (Institute Curie, Orsay, 

France); (Shaner et al., 2004) 

mCherry-α-tubulin
K40A

 pcDNA3.1 
Prof Frederic Saudou (Institute Curie, Orsay, 

France); (Dompierre et al., 2007) 

myc-KIF5A pCI-neo Dr Alessio Vagnoni (KCL, UK) 

myc-Miro1 pRK5 

Prof Pontus Aspenström (Ludwig Institute for 

Cancer Research, Uppsala University, 

Uppsala, Sweden) (Fransson et al., 2003) 

myc- Miro1
E208K/E328K

 pRK5 Gábor M Mórotz (KCL, UK) 

myc-VAPB pCI-neo (De Vos et al., 2012) 

myc-VAPBP56S pCI-neo (De Vos et al., 2012) 

VAPB pCI-neo (De Vos et al., 2012; Tudor et al., 2010) 

VAPBP56S pCI-neo (De Vos et al., 2012; Tudor et al., 2010) 
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2.1.2.2 Media for storage and growth of Escherichia coli for DNA 

purification 

Luria Bertani (LB) agar (Invitrogen), 32 g/l 

LB-ampicillin (LB agar supplemented with 100 µg/ml ampicillin) 

LB-kanamycin (LB agar supplemented with 100 µg/ml kanamycin) 

LB broth (Invitrogen), 20 g/l 

LB-ampicillin broth (LB broth supplemented with 100 µg/ml ampicillin) 

LB-kanamycin broth (LB broth supplemented with 100 µg/ml kanamycin) 

 

2.1.2.3 Preparation of plasmid DNA 

Plasmids were isolated using a NucleoSpin® Plasmid plasmid purification kit 

(Macherey-Nagel GmbH & Co.KG, Düren, Germany); the following reagents are 

provided with the kit: 

Resuspension buffer A1 supplemented with RNase A 

Lysis buffer A2 

Neutralisation buffer A3 

Wash buffer AW 

Wash buffer A4 supplemented with ethanol (80% (v/v) final ethanol 

concentration) 

Elution buffer AE (5 mM Tris-HCl pH 8.5) 
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2.1.2.4 Agarose gel electrophoresis of plasmid DNA 

Tris-Acetate-EDTA (TAE) running buffer 

40 mM Tris  

0.11% (v/v) glacial acetic acid 

1 mM EDTA  

buffered with NaOH to pH 8.0 

 

DNA loading buffer 

0.04% (w/v) Bromophenol blue (3',3'',5',5''-tetrabromophenolsulfonephthalein) 

6.6% (w/v) sucrose 

 

2.1.2.5 Polymerase chain reaction (PCR)-based site-directed 

mutagenesis 

Oligonucleotides: 

Myc-tagged Miro1
E208K/E328K

 was obtained by mutating glutamates at positions 

208 and 328 to lysines with the following oligonucleotides:  

5’-GGTACTCTCAATGATGCTAAACTCAACTTCTTTCAGAG-3’ and  

5’-CTCTGAAAGAAGTTGAGTTTAGCATCATTGAGAGTACC-3’, and  

5’-GACTGTGCTTTGTCACCTGATAAGCTTAAAGATTTATTTAAAG-3’ and  

5’-CTTTAAATAAATCTTTAAGCTTATCAGGTGACAAAGCACAGTC-3’ 
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Site-directed mutagenesis:  

Site-directed mutagenesis was performed using the QuikChange XL 

mutagenesis kit (Stratagene). The following materials are supplied with the kit:  

 

10x mutagenesis buffer:  

200 mM Tris-HCl (pH 8.8)  

100 mM KCl  

100 mM (NH4)2SO4 

20 mM MgSO4 

1% (v/v) Triton X-100  

1 mg/ml BSA  

 

pWhitescript™ 4.5 kb control plasmid 

Oligonucleotide control primer #1:  

5’-CCATGATTACGCCAAGCGCGCAATTAACCCTCAC-3’  

Oligonucleotide control primer #2:  

5’-GTGAGGGTTAATTGCGCGCTTGGCGTAATCATGG-3’  

Deoxyribonucleotide triphosphate (dNTP) mix (the composition of the mix is 

proprietary) 

QuickSolution 

PfuTurbo® DNA polymerase 
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Dpn I restriction enzyme 

pUC18 transformation control plasmid 

XL10-Gold® ultracompetent cells 

XL10-Gold® β-mercaptoethanol mix 

 

2.1.2.6 Screening recombinant clones (alkaline lysis method of DNA 

recovery) 

Solution I 

50 mM glucose 

25 mM Tris (bufferd with HCl to pH 8.0) 

10 mM EDTA (buffered with NaOH to pH 8.0) 

 

Solution II 

0.2 M NaOH  

1% (w/v) SDS  

 

Solution III 

3 M CH3COOK 

11.5% (v/v) glacial acetic acid  
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Tris-EDTA 

10 mM Tris 

1 mM EDTA 

buffered with NaOH to pH 8.0 

 

2.1.3 Mammalian cell culture and transfection media and 

reagents 

2.1.3.1 Human embryonic kidney (HEK) 293 and CV-1 cell culture 

media and reagents 

HEK292 and CV-1 cells were grown in Dulbecco’s modified Eagle’s medium 

(DMEM) with 4.5 g/l glucose (PAA Laboratories) supplemented with: 

10% (v/v) fetal bovine serum 

2 mM L-glutamine 

1 mM sodium pyruvate 

 

HEK292 and CV-1 cells were washed with: Ca
2+

, Mg
2+

-free Hank’s buffered salt 

solution (HBSS(-/-); PAA Laboratories) 
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2.1.3.2 Primary cortical neuron cell culture media and reagents 

Rat primary cortical neurons were grown in cortical neuron cell culture media 

comprised of: 

Neurobasal medium (Invitrogen) supplemented with: 

2% (v/v) B27 supplement  

2 mM L-glutamine 

100 IU/ml penicillin and 100 g/ml streptomycin 

 

Preparation of rat primary cortical neurons involved the following solutions: 

Trypsin/HBSS solution 

0.035% (v/v) trypsin in HBSS(-/-) 

 

Deoxyribonuclease (DNase) solution 

10 µg/ml DNase in HBSS with Ca
2+

 and Mg
2+

 (HBSS(+/+); PAA Laboratories) 

 

Triturating solution 

1% (w/v) AlbuMAX™ I (Invitrogen) 

0.5 mg/ml soybean trypsin inhibitor 

10 µg/ml DNase 

in HBSS(+/+) 
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Poly-L-Lysine solution 

0.01% (w/v) poly-L-lysine in sterilised ultrapure water 

 

2.1.3.3 Primary motor neuron cell culture media and reagents 

Mouse primary motor neurons were grown in motor neuron cell culture media 

comprised of: 

Neurobasal medium supplemented with: 

2% (v/v) B27 supplement 

2% (v/v) heat inactivated horse serum 

0.5 mM L-glutamine 

25 µM 2-mercaptoethanol 

10 ng/ml ciliary neurotrophic factor (R&D Systems) 

100 pg/ml glial cell-derived neurotrophic factor (R&D Systems) 

1 ng/ml brain derived neurotrophic factor (R&D Systems) 

100 IU/ml penicillin and 100 g/ml streptomycin 

25 µM L-glutamic acid (Invitrogen) 

 

Preparation of mouse primary motor neurons involved the following solutions: 

Leibovitz’s-15 (L-15) medium (Invitrogen) 

 

Dulbecco’s phosphate buffered saline without Ca
2+

 and Mg
2+

 (DPBS; Invitrogen) 
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Dialysed BSA 

4% (w/v) embryo tested BSA in L-15 medium 

 

Trypsin solution 

0.025% (w/v) trypsin in DPBS 

 

DNase/BSA solution I 

0.4% (w/v) dialysed BSA  

0.1 mg/ml DNase  

in L-15 medium 

 

DNase/BSA solution II 

0.4% (w/v) dialysed BSA  

0.02 mg/ml DNase  

in L-15 medium 

 

OptiPrep solution 

3.7% (v/v) OptiPrep™ (Axis-Shield) 

10 mM tricine 

4% (w/v) glucose 
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Ornithine/laminin 

1.5 µg/ml ornithine  

3 µg/ml laminin 

in Neurobasal medium 

 

2.1.3.4 Genotyping of VAPBP56S transgenic mice 

Genotyping of VAPBP56S transgenic mice was performed using a REDExtract-

N-Amp™ Tissue PCR Kit; the following materials were supplied with the kit: 

Extraction solution 

Tissue preparation solution 

Neutralisation solution B 

REDExtract-N-Amp PCR reaction mix 

 

The genotyping primers were the following (Tudor et al., 2010): 

5’-ATGGAGCAGAAACTCATCTCTGAAGAGGATCTGATGGCGAAG-3’ 

and  

5’-GTCAAGGCCTTCTTCCTTCCCAGTTGGGC-3’ 

 

mIL3 control primers 

5’-CTAGGCCACAGAATTGAAAGATCT-3’ and 

5’-GTAGGTGGAAATTCTAGCATCATCC-3’ 
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2.1.3.5 Calcium phosphate-based transient transfection of primary 

neurons 

Calcium phosphate-based transient transfections were performed using a 

ProFection® Mammalian Transfection System – calcium phosphate kit (Promega); the 

following reagents are provided with the kit: 

Nuclease-free H2O 

2 M CaCl2 solution 

2x HEPES-buffered saline 

 

Kynurenic acid solution 

20 mM Na-kynurenic acid 

10 mM MgCl2 

5 mM Na-HEPES buffered with NaOH to pH 7.4 

 

2.1.4 General biochemical reagents 

2.1.4.1 Isolation of mitochondria, ER and mitochondria-associated ER 

membranes (MAM) 

Isolation-buffer 

250 mM mannitol 

5 mM Na-HEPES (buffered with NaOH to pH 7.4) 

0.5 mM EGTA 
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0.1% (w/v) BSA 

EDTA-free Complete™ Protease Inhibitor Cocktail (Roche) 

 

30% Percoll gradient 

225 mM mannitol 

25 mM HEPES (buffered with NaOH to pH 7.4) 

1 mM EGTA 

0.05% (w/v) BSA 

30% (v/v) Percoll 

 

Radioimmunoprecipitation assay (RIPA)-buffer 

50 mM Tris-HCl pH 6.8 

150 mM NaCl 

1 mM EDTA 

1 mM EGTA 

0.1% (w/v) SDS 

0.5% (w/v) deoxycholic acid 

1% (v/v) Triton X-100 

EDTA-free Complete™ Protease Inhibitor Cocktail 
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5x SDS sample buffer 

250 mM Tris-HCl pH 6.8 

10% (w/v) SDS 

0.5% (w/v) Bromophenol blue  

50% (v/v) glycerol  

25% (v/v) β-mercaptoethanol  

 

2.1.4.2 Immunoprecipitation 

Immunoprecipitation lysis buffer 

50 mM Tris-citrate  

150 mM NaCl 

1% (v/v) Triton X-100 

5 mM EGTA  

5 mM EDTA 

EDTA-free Complete™ Protease Inhibitor Cocktail 

 

PBS-Triton 

0.1% (v/v) Triton X-100 in PBS 
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2.1.4.3 SDS-polyacrylamide gel electrophoresis (PAGE) and 

immunoblotting 

2.1.4.3.1 SDS-PAGE of protein samples 

Stacking gel 

117 mM Tris-HCl pH 6.8 

5.6% (v/v) acrylamide  

0.1% (w/v) SDS 

0.05% (w/v) APS 

0.3% (v/v) TEMED  

 

Resolving gel 

375 mM Tris-HCl pH 8.8 

8, 10 or 12% (v/v) acrylamide 

0.1% (w/v) SDS 

0.1% (w/v) APS 

0.1% (v/v) TEMED 

 

Running Buffer 

25 mM Tris 

192 mM glycine 

0.1% (w/v) SDS 
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2.1.4.3.2 Immobilisation of proteins on nitrocellulose membranes 

Transfer buffer 

25 mM Tris 

192 mM glycine 

20% (v/v) methanol 

Ponceau S solution 

5% (v/v) glacial acetic acid 

0.1% (w/v) Ponceau S (3-Hydroxy-4-(2-sulfo-4-[4-sulfophenylazo]phenylazo)-

2,7-naphthalenedisulfonic acid sodium salt) 

 

2.1.4.3.3 Antibody probing of membrane-bound proteins 

Blocking buffer 

0.1% (v/v) Tween-20 

5% (w/v) dried skimmed milk in TBS 

 

TBS-Tween 

0.1% (v/v) Tween-20 in TBS 
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Enhanced chemiluminescence (ECL) development reagent kit (GE Healthcare); 

the following reagents are provided with the kit: 

Detection solution A (luminol solution) 

Detection solution B (peroxide solution) 

 

Table 2.3 Primary antibodies 

Antibody Supplier 
Monoclonal/Polyclonal, 

Species 

Working 

dilution 

Acetylated tubulin 

(6-11B-1) 
Sigma Monoclonal, mouse 

1:20,000 

(IB) 

α-tubulin (DM1A) Sigma Monoclonal, mouse 
1:10,000 

(IB) 

α-tubulin Abcam Polyclonal, rabbit 
1:10,000 

(IB) 

COX IV (3E11) 
Cell Signaling 

Technology 
Monoclonal, rabbit 1:2000 (IB) 

GAPDH (14C10) 
Cell Signaling 

Technology 
Monoclonal, rabbit 1:2000 (IB) 

Haemagglutinin 

(HA)-tag 
Sigma Polyclonal, rabbit 1:2000 (IB) 

IgG2a,κ (UPC-10) Sigma Monoclonal, mouse 1:250 (IP) 

IP3R3 Millipore Polyclonal, rabbit 1:2000 (IB) 

Kinesin-1 (pcp42) 

Prof Ron Vale 

(UCSF); (Niclas et 

al., 1994) 

Polyclonal, rabbit 1: 2000 (IB) 

Myc-tag (9B11) 
Cell Signaling 

Technology 
Monoclonal, mouse 

1:2000 (IB) 

1:1000 (IF) 

1:250 (IP) 

PDI (RL77) 
Affinity 

BioReagents 
Monoclonal, mouse 1:2000 (IB) 

VAPB (#3504) 
In house; (Tudor et 

al., 2010) 
Polyclonal, rabbit 1:2000 (IB) 

IB-immunoblot, IF-immunofluorescence, IP-immunoprecipitation 
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Table 2.4 Secondary antibodies 

Antibody Supplier 
Monoclonal/Polyclonal, 

Species 

Working 

dilution 

anti-mouse Ig conjugated 

to horseradish peroxidase 
Dako Polyclonal, rabbit 1:5000 (IB) 

anti-rabbit Ig conjugated 

to horseradish peroxidase 
Dako Polyclonal, goat 1:5000 (IB) 

Anti-mouse IgG coupled 

with Alexa Fluor 488 
Invitrogen Polyclonal, goat 1:500 (IF) 

IB-immunoblot, IF-immunofluorescence 

 

2.1.5 Microscopy 

2.1.5.1 Immunofluorescence 

Fixing solution 

3.7% (v/v) formaldehyde in PBS 

 

Quenching solution 

50 mM NH4Cl in PBS 

 

Permeabilising solution 

0.2% (v/v) Triton X-100 in PBS 

 

Blocking solution 

0.2% (v/v) gelatin from cold water fish skin in PBS 
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Mowiol-DABCO mounting medium 

10% (w/v) Mowiol® 4-88 (Calbiochem) 

25% (w/v) glycerol 

100 mM Tris-HCl pH 8.5 

2.5% (w/v) DABCO (1,4-diazobicyclo[2.2.2]octane) 

 

2.1.5.2 Fura2 ratio imaging 

External solution 

145 mM NaCl 

2 mM KCl 

5 mM NaHCO3 

1 mM MgCl2 

2.5 mM CaCl2 

10 mM glucose 

10 mM HEPES pH 7.0 (Invitrogen) 

 

External solution with 50 mM KCl 

95 mM NaCl 

50 mM KCl 

5 mM NaHCO3 
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1 mM MgCl2 

2.5 mM CaCl2 

10 mM glucose 

10 mM HEPES pH 7.0 

 

External solution with 20 mM CaCl2 

145 mM NaCl 

2 mM KCl 

20 mM CaCl2 

5 mM NaHCO3 

1 mM MgCl2 

10 mM glucose 

10 mM HEPES pH 7.0 

 

External solution with 20 mM EGTA 

145 mM NaCl 

2 mM KCl 

5 mM NaHCO3 

1 mM MgCl2 

20 mM EGTA 

10 mM glucose 

10 mM HEPES pH 7.0 
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2.2 Methods 

2.2.1 General microbiology methods 

2.2.1.1 Storage and growth of E. coli for DNA purification 

E. coli containing plasmids of interest were stored at -70 C in sterile 25% (v/v) 

glycerol solution in LB broth containing the appropriate antibiotic for the plasmid 

vector.  

To grow bacteria for DNA purification, E. coli containing the plasmid of interest 

were spread out on LB agar plates (see section 2.1.2.2) containing the appropriate 

antibiotic for the plasmid vector and grown for 16 hours at 37 °C. Single bacterial 

colonies were picked and grown in 5 ml LB-ampicillin broth or LB-kanamycin broth 

(see section 2.1.2.2) for 12-15 hours at 37 °C while shaking at 220 rpm.  

 

2.2.1.2 Preparation of plasmid DNA 

To isolate plasmid DNA a NucleoSpin® Plasmid plasmid purification kit (see 

section 2.1.2.3) was used according to the manufacturer’s instructions. Typically 5 ml of 

bacterial culture yielded approximately 25 μg of pure plasmid DNA.  

This kit is based on the alkaline lysis method of DNA recovery (Birnboim and 

Doly, 1979). In this procedure, cells (suspended in 250 µl Resuspension buffer A1 

supplemented with RNase A) are lysed under alkaline conditions for 5 min using 250 µl 

Lysis buffer A2 which denaturates nucleic acids and proteins. RNase is used to 

eliminate RNA contamination from the preparation. When the lysis solution is 

neutralised by adding 300 µl Neutralisation buffer A3, chromosomal DNA and proteins 
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are unable to renaturate correctly due to their large size and form insoluble precipitates. 

Plasmid DNA is never fully denaturated because it is a relatively small, supercoiled, 

circular molecule. Therefore, plasmid DNA renaturates correctly and stays in solution 

following the neutralisation step effectively separating it from chromosomal DNA and 

proteins. Plasmid DNA is bound to silica membranes (provided with the kit) and 

contaminations (salts, metabolites, cellular components) are removed by washing with 

the appropriate buffers (500 µl Wash buffer AW and 600 µl Wash buffer A4 

supplemented with ethanol). Pure plasmid DNA is eluted under low ionic strength using 

50 µl slight alkaline buffer (Buffer AE).   

 

2.2.1.3 Quantitation of nucleic acids 

Spectrophotometric quantitation of plasmid DNA was performed using an 

Ultrospec 3100 pro (GE Healthcare) or NanoDrop 1000 (Thermo Scientific) 

spectrophotometer. The absorbance of samples at 260 nm and 280 nm was recorded. An 

optical density (OD) reading of 1 at a wavelength of 260 nm corresponds to a 

concentration of 50 µg/ml for double stranded DNA. Proteins are known to strongly 

absorb at a wavelength of 280 nm thus the ratio of OD readings at 260 and 280 nm 

(OD260/280) gives an indication of purity of the sample. Pure DNA has an OD260/280 value 

of 1.8 (Sambrook et al., 1989).   

Plasmid DNA concentrations were also roughly quantified using ethidium 

bromide fluorescent quantitation. This method relies on the ability of ethidium bromide 

to bind to DNA. UV-induced fluorescence emitted by DNA-linked ethidium bromide is 

proportional to the total mass of DNA. The amount of DNA in a sample could then be 

quantified by visual comparison with the UV-induced fluorescence of a known quantity 
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of a DNA standard or series of standards. This technique has a detection limit of as little 

as 5 ng of DNA.   

 

2.2.1.4 Restriction enzyme digestion of plasmid DNA 

Plasmid DNA was digested using the appropriate restriction enzyme and 

corresponding buffer according to the manufacturer’s instructions (Invitrogen). 5 units 

of enzyme were used per μg of DNA (1 unit is usually the amount of enzyme required 

to cleave 1 µg of DNA in 1 hour at 37 °C in the appropriate buffer). The volume of 

enzyme never exceeded 10% (v/v) of final reaction volume and the incubation time with 

the enzyme was 2 hours at 37 °C.  

 

2.2.1.5 Agarose gel electrophoresis of plasmid DNA 

Agarose (ultra pure, electrophoresis grade, Invitrogen) was dissolved in boiling 

TAE buffer (see section 2.1.2.4) in a final concentration of 0.6-1.5% (w/v) and cast on a 

gel bed with a suitable comb using a horizontal gel apparatus (Hybaid). On setting, gels 

were placed in an electrophoresis tank containing TAE buffer to a level just above the 

gel surface. DNA samples containing DNA loading buffer (see section 2.1.2.4) were 

loaded into the sample wells and were run at 100 V. Gels were stained with 10 μg/ml 

ethidium bromide to visualise DNA. Gels were then placed on a 3UV transilluminator 

emitting ultra violet light (λ=302 nm), visualised on a Sony video monitor and 

videographed using a Sony video graphic printer.   
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To determine the size of the separated DNA, nucleic acid size markers were used: 

Phage λ DNA digested with Hind III (sizes in bp): 23,130; 9416; 6557; 4361; 

2322; 2027; 564; 125. 

MassRuler™ DNA ladder mix (Thermo Scientific; sizes in bp): 10,000; 8000; 

6000; 5000; 4000; 3000; 2500; 2000; 1500; 1031; 900; 800; 700; 600; 500; 400; 300; 

200; 100; 80. 

 

2.2.1.6 PCR-based site-directed mutagenesis 

Myc-tagged Miro1
E208K/E328K

 was obtained by mutation of glutamate residues at 

positions 208 and 328 to lysine using the mutagenic primers listed in section 2.1.2.5 and 

a QuikChange XL site-directed mutagenesis kit (Stratagene) (see section 2.1.2.5) 

according to the manufacturer’s instructions.   

The QuikChange XL site-directed mutagenesis system is designed to produce 

mutations in double stranded plasmids using primers containing the entire mutation and 

the high fidelity, thermostable PfuTurbo® DNA polymerase in PCR. Experimental 

reactions and control reactions, to test mutation efficiency using pWhitescript™ control 

plasmid, were set up as shown below and used for PCR as shown in Table 2.5. The 

pWhitescript™ mutagenesis control plasmid contains a stop codon instead of a 

glutamine codon in the gene of β-galactosidase thus β-galactosidase is inactive in cells 

containing this plasmid. Competent cells containing this plasmid appear white on LB-

ampicillin agar plates pre-spread with X-gal (5-bromo-4-chloro-3-indoyl-β-D-

galactopyranoside) and IPTG (isopropyl-1-thio-β-D-galactopyranoside) because the 

inactive β-galactosidase enzyme is unable to cleave X-gal to galactose and an insoluble 
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blue product. During the mutagenesis the control primers mutate the stop codon back to 

glutamine in the β-galactosidase gene. The active β-galactosidase is able to cleave X-

gal and the appearing blue products are obvious markers of the successful mutagenesis.  

Reactions were performed in 0.2 ml PCR tubes (Thermo Fisher). Reactions were 

mixed gently by pipetting and then placed in a T3 Thermocycler (Biometra) for the PCR 

(cycling parameters are shown in Table 2.5). The lowest number of amplification cycles 

was used to minimise the possibility of errors by the DNA polymerase whilst at the 

same time generating enough amplified product for DNA purification. A sample of each 

PCR product was analysed for size, quality and quantity by restriction enzyme digestion 

and agarose gel electrophoresis alongside appropriate DNA markers (see section 2.2.1.4 

and 2.2.1.5). 

 

Control reaction (reagents, except H2O, were supplied with the kit):  

2 μl (10 ng) of pWhitescript™ control template DNA  

5 μl of 10x mutagenesis buffer (see section 3.1.2.5) 

1 μl of dNTP mix  

1.25 μl (125 ng) of oligonucleotide control primer #1 

1.25 μl (125 ng) of oligonucleotide control primer #2 

3 μl QuickSolution 

36.5 μl H2O to final volume of 50 μl  

1 μl (2.5 U/μl) PfuTurbo® DNA polymerase  
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Experimental reaction (reagents, except DNA template, oligonucleotides and H2O, 

were supplied with the kit):  

5 μl of 10x mutagenesis buffer  

10 ng DNA template 

1 μl dNTP mix  

125 ng of each oligonucletide 

3 μl QuickSolution 

H2O to a final volume of 50 μl  

1 μl (2.5 U/μl) PfuTurbo® DNA polymerase 

 

Table 2.5 PCR-based site-directed mutagenesis cycling parameters. 

Step Cycles Temperature (°C) Time 

1. Initial denaturation 1 95 1 min 

2. Denaturation, annealing and elongation 18 

95 50 s 

60 150 s 

68 10 min 

3. Extension/Elongation 1 68 7 min 

4. Cooling  4 unlimited 
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2.2.1.6.1 Digesting the PCR product 

Following PCR, the reactions were placed on ice, 1 μl (10 U/μl) of the Dpn I 

restriction enzyme (supplied with the kit) was added and the reaction was incubated at 

37 °C for 1 hour. The Dpn I endonuclease (target sequence 5’-Gm
6
ATC-3’) is specific 

for methylated and hemimethylated DNA and is used to digest parental DNA and to 

select for mutation-containing amplified DNA.  

 

2.2.1.6.2 Transformation into XL10-Gold® ultracompetent cells 

2 μl of XL10-Gold® β-mercaptoethanol mix (provided with the kit) was added to 

45 μl thawed XL10-Gold® ultracompetent cells (provided with the kit) and the reaction 

incubated on ice for 10 minutes. 2 μl of the Dpn I-treated DNA was transferred to the 

competent cells and the reaction incubated on ice for 30 minutes. A second control was 

set up to verify transformation efficiency: 0.1 ng of pUC18 transformation control 

plasmid (provided with the kit) was added to 45 µl XL10-Gold® ultracompetent cells 

and incubated on ice for 30 minutes. The cells were then heat pulsed for 30 seconds at 

42 °C, and then placed on ice for 2 minutes. Following the heat pulse, 0.5 ml of super 

optimal broth with catabolite repression (S.O.C.) medium (Invitrogen) was added to the 

cells. Following incubation at 37 °C for 1 hour with shaking at 220 rpm, the samples 

were spread on LB-ampicillin agar plates. The transformed control pWhitescript™ and 

pUC18 cells were plated on LB-ampicillin agar plates pre-spread with 40 μl of X-gal 

(20 mg/ml in DMSO) and 20 μl of 100 mM IPTG for colour selection. The plates were 

incubated at 37 °C for 16 hours. The successfully mutagenised pWhitescript™ control 

colonies appeared as blue colonies. The number of pUC18 control colonies was greater 

than 100 colonies and most of them displayed the blue phenotype. The number of the 

colonies for the experimental reaction was about 100 colonies.  
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2.2.1.6.3 Screening recombinant clones (alkaline lysis method of DNA 

recovery) 

Following overnight incubation, bacterial colonies present on the LB-ampicillin 

agar plate were picked with sterile inoculation loops and each used to inoculate 5 ml 

LB-ampicillin broth. These samples were placed for 16 hours at 37 °C while shaking at 

220 rpm. Plasmid DNA from these samples was prepared by the alkaline lysis method 

which exploits differences in properties between plasmid and bacterial genomic DNA 

(Birnboim and Doly, 1979). Briefly, 1.5 ml of culture was pelleted by centrifugation at 

14,000 x g for 2 minutes and the supernatant discarded. The pellet was resuspended in 

100 μl ice-cold Solution I (see section 2.1.2.6) by vortexing. 200 μl freshly prepared 

Solution II (see section 2.1.2.6) was added and mixed by inverting the tube several 

times, before placing the tubes on ice for no longer than 5 minutes. 150 μl Solution III 

(see section 2.1.2.6) was then added and the contents of the tube mixed by inversion. 

The resulting mixture was left to precipitate on ice for 5 minutes before centrifugation at 

14,000 x g for 10 minutes; this stage efficiently removes the precipitated genomic DNA 

and proteins. The plasmid DNA was precipitated by adding 2 volumes of 100% ethanol 

and incubation at 20 °C for 5 minutes. Since DNA is negatively charged and insoluble 

in organic solvents, ethanol was used to precipitate DNA from the aqueous solution. 

The precipitate was then pelleted by centrifugation at 14,000 x g for 10 minutes. Pellets 

were washed in 70% (v/v) ethanol, air-dried and then resuspended in 50 μl TE (see 

section 2.1.2.6) containing 20 μg/ml RNase A. To prevent DNA degradation by 

contaminating nucleases TE-buffer contains EDTA which chelates Mg
2+

, a cofactor of 

nucleases. RNase is used to eliminate RNA contamination from the prep. An aliquot of 

the plasmid DNA was removed and used for restriction enzyme digestion and agarose 

gel electrophoresis (see section 2.2.1.4 and 2.2.1.5) to screen for the desired construct.   
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2.2.1.6.4 DNA sequencing 

The isolated plasmid DNA was sent to Eurofins MWG, UK for sequencing to 

confirm the presence of the desired mutations.   

 

2.2.2 Mammalian cell culture and transfection methods 

2.2.2.1 HEK293 and CV-1 cell culture 

HEK293 and CV-1 cells were maintained in monolayer culture in DMEM with 

supplements (see section 2.1.3.1) at 37 °C under an atmosphere of 5% CO2. Cells were 

passaged when they formed an approximately 80% confluent layer in the culture vessel. 

Medium was removed and cells were washed once with HBSS(-/-) (see section 2.1.3.1). 

To dislodge cells from the surface of the vessel, enough trypsin-EDTA solution (see 

section 2.1.3.1) was added to cover the monolayer (e.g. 1 ml trypsin-EDTA solution for 

a 25 cm
2
 flask) and the cells were incubated at 37 °C for 2-3 min. DMEM with 

supplements (e.g. 4 ml for a 25 cm
2
 flask) was then added to inactivate the trypsin, and 

cells were pipetted up and down to triturate them. Finally, the cell suspension was 

distributed into vessels for further culturing.  

 

2.2.2.2 Primary cortical neuron cell culture 

All work involving animals was conducted in accordance with the UK Animals 

(Scientific Procedures) Act 1986 and the guidelines issued by KCL. Cortical neurons 

were obtained from embryonic day 18 (E18) Sprague Dawley rat embryos (Charles 

River Laboratories).  
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A time-mated Sprague Dawley pregnant rat was sacrificed by asphyxiation with 

CO2 followed by cervical dislocation. The abdominal wall was cut through and the two 

horns of the uterus removed. The foetuses (typically 12-14 per animal) were removed 

and dissected in HBSS(-/-). The foetuses were removed from amniotic sac and 

decapitated. The embryonic brain was removed from the skull and transferred to 

HBSS(-/-). The embryonic brains were then carefully cleaned from meninges to prevent 

contamination of the cultures with fibroblasts and the cortices were dissected. The 

dissected cortical tissue of all embryos were pooled, washed once with HBSS(-/-) and 

re-suspended in 5 ml trypsin/HBSS solution (see section 2.1.3.2). Following incubation 

for 15 min at 37 °C, 5 ml DNase solution was added (see section 2.1.3.2). After mixing 

by inversion, the solution was aspirated and the tissue was re-suspended in 1 ml of 

trituration solution (see section 2.1.3.2). The tissue was gently triturated with flamed-

polished glass Pasteur pipettes of progressively smaller bore to obtain single cells. 

Cortical neuron cell culture media (see section 2.1.3.2) was added up to a final volume 

of 5 ml and the cell number was determined by counting a sample of the cell suspension 

using a Neubauer haemocytometer (Agar Scientific). To include only viable cells in the 

cell qantification, a sample of cell suspension was diluted tenfold with 0.4% (w/v) 

Trypan Blue ((3Z,3'Z)-3,3'-[(3,3'-dimethylbiphenyl-4,4'-diyl)di(1Z)hydrazin-2-yl-1-

ylidene]bis(5-amino-4-oxo-3,4-dihydronaphthalene-2,7-disulfonic acid)) and loaded 

into the haemocytometer. Trypan Blue is a vital dye derived from toluidin. Trypan Blue 

is excluded by viable cells but it diffuses through the plasma membrane of dead cells 

effectively staining them. Cells stained by Trypan Blue appear dark blue in the 

microscope thus they can be easily excluded from the cell counting. The 

haemocytometer contains two identical, ruled chambers. The ruled area consists nine 1 

x 1 mm squares with a depth of 0.1 mm. Thus, the volume of each square is 0.1 mm
3
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(10
-4

 ml) when the haemocytometer is coverslipped. The number of viable cells was 

tallied in 4-4 squares in both chambers. Cells that touched the border on two sides of the 

square were included in the cell count and cells on the other two borders were excluded 

from the count. To calculate the number of cells per ml, the average number of counted 

cells was multiplied by 10,000 (10
4
) and further multiplied by the dilution factor (10). 

Finally, 4.5 x 10
6
 cells were seeded and cultured on poly-L-lysine-coated (see section 

2.1.3.2) square (22 x 22 mm; No. 1) or round (18 mm; No. 1) glass coverslips 

(Marienfield GmbH & Co.KG, Lauda-Königshofen, Germany) in cortical neuron cell 

culture media (see section 2.1.3.2) in 6 or 12 well plates (Thermo Scientific). Cells were 

cultured for 7 days at 37 °C under an atmosphere of 5% CO2 before they were used for 

experiments. The purity of the cortical neuron cell cultures prepared and cultured in this 

way has been shown to be greater than 97% and routine staining for glia confirmed this 

finding in our group (Ackerley et al., 2000; Nikolic et al., 1996). 

 

2.2.2.3 Primary motor neuron cell culture 

VAPBP56S transgenic mice were described previously (Tudor et al., 2010). 

Motor neurons from VAPBP56S transgenic and control littermate mice were prepared 

in collaboration with Dr Elizabeth Tudor (KCL, UK) and Dr Kurt De Vos (KCL, UK). 

In the following procedure each embryo was kept separately to ensure the genotype of 

each culture. Retrospective genotyping was carried using DNA extracted from non-

spinal cord tissue (see section 2.2.2.4). 

Motor neurons were obtained from E13 time-mated mouse embryos. A time-

mated pregnant animal was sacrificed by cervical dislocation. The abdominal wall was 

cut through and the two horns of the uterus removed. The foetuses (typically 8-10 per 
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pregnant animal) were removed and dissected in DPBS (see section 2.1.3.3). The 

foetuses were removed from amniotic sac and decapitated below the skull. The anterior 

portion of the abdomen, thorax and all the viscera were cut away and stored at -70 ºC 

for subsequent genotyping. The vertebral columns were carefully opened and the spinal 

cord removed. Spinal cords that were cleaned of meninges and dorsal root ganglia were 

cut into small pieces and incubated in trypsin solution (see section 2.1.3.3) for 10 min at 

37 °C. Following the incubation, the tissue was mixed with 1 ml DNase/BSA solution I 

(see section 2.1.3.3) and agitated vigorously until tissue fragments disaggregated. The 

tissue fragments were triturated using a 1 ml pipette (two strokes) and were transferred 

into 1 ml DNase/BSA solution II (see section 2.1.3.3) and triturated an additional 6 

strokes with a 1 ml pipette. The resulting cell suspension was layered onto a 4% (w/v) 

dialysed BSA (see section 2.1.3.3) cushion and centrifuged at 370 x g for 5 min. The 

pellet was re-suspended in 1 ml L-15 medium (see section 2.1.3.3) and loaded onto a 

3.7% OptiPrep solution (see section 2.1.3.3) and centrifuged at 755 x g for 15 min. 

Motor neurons were collected at the interface between the L-15 medium and OptiPrep 

solution, diluted in L-15 medium and re-pelleted through 4% (w/v) dialysed BSA 

cushion at 370 x g for 5 min to wash out the OptiPrep solution. The cell pellet was 

resuspended in motor neuron cell culture media (see section 2.1.3.3) and the cell density 

was determined by counting a sample of the cell suspension. 2 x 10
4
 cells were seeded 

and cultured on ornithine/laminin-coated (see section 2.1.3.3) square glass coverslips in 

motor neuron cell culture media in 6 well plates. Cells were cultured for 7 days at 37 °C 

under an atmosphere of 5% CO2 before they were used for experiments. Motor neurons 

were distinguished from other types of neurons and any glia in the cultures by 

morphological criteria as described by others (Roy et al., 1998; Tradewell et al., 2011). 

In particular, they have much larger cell bodies (greater than 20 m in diameter) as 
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compared to other spinal neurons, noteable dendritic trees and a prominent axon. Also, 

they are readily distinguishable from any large sensory dorsal root ganglion (DRG) 

neurons remaining in the culture since DRG cells lack dendrites. The purity of motor 

neurons in the cultures was approximately 70%. 

 

2.2.2.4 Genotyping of VAPBP56S transgenic mice 

Genotypes were determined by PCR amplification of tissue DNA extracted using 

the REDExtract-N-Amp™ Tissue PCR Kit (see section 2.1.3.4) according to the 

manufacturer’s instructions. In brief, each tissue sample was mixed with 100 µl 

extraction solution and 25 µl tissue preparation solution, and incubated for 10 minutes 

at 20 °C and for 3 minutes at 95 °C. Finally, 100 µl neutralisation solution B was added 

to the samples. An aliquot of each sample was then mixed with REDExtract-N-Amp 

PCR reaction mix and primers as described below and used for PCR (cycling 

parameters are shown in Table 2.6). PCR products were then resolved on 1.5% (w/v) 

agarose gels and visualised with ethidium bromide.  

PCR mixture: 

10 μl REDExtract-N-Amp PCR reaction mix 

4 μl PCR grade H2O 

10 pmol of each primer (see section 2.1.3.4) 

4 μl tail/tissue extract 
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Table 2.6 PCR cycling parameters for genotyping VAPBP56S transgenic mice. 

Step Cycles Temperature (°C) Time (min) 

1. Initial denaturation 1 94 3 

2. Denaturation, annealing and elongation 34 

94 1 

55 1 

72 2 

3. Extension/Elongation 1 72 10 

4. Cooling  4 unlimited 

 

2.2.2.5 Transient transfection of HEK293 and CV-1 cell cultures 

HEK293 and CV-1 cells were transfected using ExGen 500 (Thermo Scientific), a 

polyethylenimine based transfection reagent. Polyethylenimine is a cationic polymer 

with high proton buffer capacity (“proton sponge effect”). The mechanism of 

polyethylenimine based transfection was described by Boussif and Sonawane (Boussif 

et al., 1995; Sonawane et al., 2003). The positively charged polyethylenimine polymer 

interacts with negatively charged DNA and forms small particles (polyplexes). 

Polyplexes settle on and bind to anionic cell surface residues and are taken up by the 

cells via endocytosis (Boussif et al., 1995). The “proton sponge effect” of 

polyethylenimine neutralises the acidic pH of the endosome/lysosome and this results in 

a charge driven chloride influx into the endosome. The chloride influx causes osmotic 

swelling and disruption of the endosome and allows the escape of the polyplexes from 

the endosome (Sonawane et al., 2003). The DNA then dissociates from the polyplex and 

translocates to the nucleus.  

Transfections were conducted according to the manufacturer’s instructions. Cells 

were plated on 18 mm diameter coverslips in 12 well plates, in 25 cm
2
 flasks or in 10 

cm diameter petri dishes (Greiner Bio-One) the day before transfection so that they 
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reached 50-70% confluency on the day of transfection. For each transfection, the 

amounts of reagents were vortexed as indicated in Table 2.7 for 10 s. The transfection 

solution was then incubated for 10 min at 20 °C and added drop-wise to the cells. The 

cells were kept in an incubator at 37 °C under an atmosphere of 5% CO2 and used for 

analysis 24 h post-transfection. The average transfection efficiency (as detected by 

immunostaining) was approximately 30%.  

 

Table 2.7 Amounts of reagents for ExGen 500 based transient transfection. 

 

 

 

 

 

 

2.2.2.6 Calcium phosphate-based transient transfection of primary 

cortical neurons 

The calcium phosphate transfection method involves mixing DNA with CaCl2 in 

phosphate buffer. The mixed components form fine calcium phosphate-DNA co-

precipitates, which bind to the cell surface and are taken up by the cells via endocytosis. 

DNA is released from the endocytic vesicles due to osmotic swelling and disruption of 

the endocytic vesicles caused by Ca
2+

 driven chloride influx. The released DNA then 

translocates to the nucleus (Kovtun et al., 2009).   

Cortical neurons were transfected using a ProFection® Mammalian Transfection 

System – calcium phosphate kit (see section 2.1.3.5) after 7 days in culture as 

previously described (Ackerley et al., 2000; Xia et al., 1996). The conditioned cortical 

Plate Format 

Plasmid DNA 

per well/dish 

(µg) 

ExGen 500 

per dish (µl) 

150 mM NaCl 

per dish (µl) 

12 well plate 1 4.3 50 

25 cm
2
 dish 6 25.8 300 

10 cm petri dish 12 51.6 600 
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neuron cell culture media were removed and kept at 37 °C while neurons were 

incubated with 1 ml (6 well plate) or 0.5 ml (12 well plate) kynurenic acid solution (see 

section 2.1.3.5) in cortical neuron cell culture media (see 2.1.3.2) for 30 min at 37 °C. 

Kynurenic acid solution inhibits ionotropic glutamate receptors and as such protects the 

cells from Ca
2+

 mediated toxicity during transfection. Kynurenic acid blocks NMDA 

and AMPA glutamate receptors in a competitive manner via binding to the glycine and 

glutamate-binding sites of the receptors while Mg
2+

 selectively blocks NMDA receptors 

through binding to a site deep within the pore forming region (Dingledine et al., 1999). 

For each transfection, the amounts of reagents were used as indicated in Table 2.8. The 

last reagent 2x HEPES-buffered saline (see section 2.1.3.5) was added drop-wise to the 

DNA mixture while continuously vortexing and was vortexed for a further 10 s after 

addition. The transfection solution was then added drop-wise to the cells and cells were 

incubated for 45 min at 37 °C. After incubation the cells were washed once with fresh 

cortical neuron cell culture media and once with conditioned cortical neuron cell culture 

media. Finally, a 1:1 mixture of conditioned and fresh cortical neuron cell culture media 

was added and the cells were transferred to an incubator and kept at 37 °C under an 

atmosphere of 5% CO2. After 36-48 h of transfection, cells were used for time-lapse 

microscopy or Fura2 ratio imaging studies (see section 2.2.4.2 and 2.2.4.3). The average 

transfection efficiency was approximately 5%. 

 

Table 2.8 Amounts of reagents for calcium phosphate-based transient transfection. 

Plate 

Format 

Plasmid DNA 

per well (µg) 

Nuclease-free 

H2O per well 

(µl) 

2 M CaCl2 

per well (µl) 

2x HEPES-

buffered 

saline per well 

(µl) 

6 well plate 5 190 26 200 

12 well plate 10 95 13 100 
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2.2.3 General biochemical methods 

2.2.3.1 Isolation of mitochondria, ER and MAM 

Mitochondria, ER and MAM were prepared by differential centrifugation as 

described previously (Vance, 1990). The whole procedure was conducted at 4 °C or on 

ice. 24 h after transfection, HEK293 cells were harvested from 25 cm
2
 flasks or 10 cm 

diameter petri dishes by trypsinisation and washed once with PBS (see section 2.1.1) 

and once with isolation buffer (see section 2.1.4.1) by centrifugation at 13,000 x g for 

30 s. Cells were re-suspended in 500 µl ice-cold isolation-buffer and homogenised on 

ice using a pre-cooled glass/Teflon Potter Elvehjem dounce homogeniser (100 strokes 

by hand) (No19; Kimble Chase, Vineland, NJ, USA). A sample was removed as “Total” 

cell proteins and lysed in 5x SDS sample buffer (see section 2.1.4.1). The remaining 

homogenate was centrifuged twice at 600 x g for 5 minutes to pellet and remove nuclei 

and any large cellular debris. Mitochondria containing MAM were then pelleted from 

the supernatant by centrifugation at 10,300 x g for 10 minutes. The supernatant obtained 

after removal of the MAM-enriched mitochondrial fraction was centrifuged at 100,000 

x g for 30 min to pellet the ER/microsomes. To separate MAM and mitochondria, the 

MAM-enriched mitochondrial pellet was resuspended in isolation buffer and layered on 

top of a self-forming 30% Percoll gradient (see section 2.1.4.1). After centrifugation at 

95,000 x g for 30 min, a dense band containing the mitochondria was recovered at the 

bottom of the gradient; the MAM-containing band was retrieved above the 

mitochondrial band. To remove residual Percoll, the mitochondrial fraction was diluted 

in threefold in isolation medium and mitochondria were washed twice by centrifugation 

at 6,300 x g for 10 min. The MAM fraction was diluted with isolation buffer in 

threefold and centrifuged once at 6,300 x g for 10 min to remove contaminating 
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mitochondria. MAM was pelleted from the resulting supernatant by centrifugation at 

100,000 x g for 1 h. All final organelle pellets were resuspended and lysed in RIPA-

buffer (see section 2.1.4.1) and the protein concentrations were determined using 

Bradford assay (see section 2.2.3.3). Protein concentrations were adjusted to 1 μg/μl 

with sterile water and 5x SDS sample buffer, and protein samples were used for SDS-

PAGE (see section 2.2.3.4).  

 

2.2.3.2 Immunoprecipitation 

Immunoprecipitations were performed at 4 °C or on ice. Cells were harvested by 

trypsinisation and washed once in ice-cold PBS (see section 2.1.1). 1/10 of the sample 

was removed (“Input”) and lysed in 5x SDS sample buffer (see section 2.1.4.1). The rest 

of the sample was incubated in immunoprecipitation lysis buffer (see section 2.1.4.2) 

for 1 h after which the lysates were centrifuged at 100,000 x g for 40 minutes to pellet 

insoluble particles. Supernatants were transferred to fresh tubes and were precleared by 

incubation with 30 μl of Protein G-sepharose beads (50% (v/v) in PBS-Triton) (see 

section 2.1.4.2) for 30 minutes. Following centrifugation at 3,000 x g for 10 s to settle 

the beads supernatants were transferred to fresh tubes and total protein concentrations 

were quantified by Bradford assay (see section 2.2.3.3). The protein concentration was 

adjusted to 1 μg/μl if needed and equal amounts of protein (500 μg) for each sample 

were then used for immunoprecipitation. Appropriate primary antibody was added (see 

Table 2.3) and the samples were incubated with mild mixing on a rotary shaker for 16 

hours at 4 °C. After addition of 30 μl of Protein G-sepharose beads (50% (v/v) in PBS-

Triton) the samples were incubated for a further 2 hours on a rotary shaker before 

centrifuging at 3,000 x g for 10 s to pellet the beads. The pelleted beads were retained 
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and washed four times with 1 ml PBS-Triton. The bound proteins were then eluted from 

the beads by incubation in 50 μl of 2x SDS sample buffer and heating at 95 °C for 5 

minutes and used for SDS-PAGE (see section 2.2.3.4).  

 

2.2.3.3 Protein concentration determination – Bradford Assay 

Protein concentrations were determined using a Bio-Rad protein assay kit 

according to the manufacturer’s instructions (Bio-Rad). The assay is based on the 

colorimetric reaction described by Bradford (Bradford, 1976). Essentially, the binding 

of Coomassie Brilliant Blue G-250 dye to proteins shifts its absorption peak from 465 

nm to 595 nm (Bradford, 1976). In brief, eight dilutions were prepared from a freshly 

prepared BSA standard from 50 µg/µl to 3.9 µg/µl for a standard curve and four 

dilutions from each protein sample with the Bradford reagent. 50 µl of each dilution was 

moved in a 96 well microtiter plate and absorbance readings were recorded at a 

wavelength of 595 nm using a VICTOR3 multilabel plate reader (Perkin Elmer). Protein 

concentrations of the samples were calculated using the recorded absorbance values and 

a standard curve drawn from the freshly prepared BSA stanard.  

 

2.2.3.4 SDS-PAGE and immunoblotting 

2.2.3.4.1 SDS-PAGE of protein samples 

Protein samples in SDS sample buffer were heated on a heat block for 5 minutes 

at 95 ºC. Samples were then separated by SDS-PAGE on 8, 10 or 12% (v/v) (depending 

on the size of the proteins of interest) acrylamide gels (see section 2.1.4.3.1) using the 
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Mini-PROTEAN 3 gel electrophoresis system (Bio-Rad) with a discontinuous buffer 

system (see section 2.1.4.3.1).  

Gels were run at 100 V until the dye front reached the bottom of the gel or 

proteins were separated as required. To follow the progress of protein separation and to 

determine protein size Precision Plus Protein™ Standards (Bio-Rad) were used. 

Precision Plus Protein™ Standards are broad range protein ladders consisting of 10 pre-

stained proteins, sizes in kDa: 250; 150; 100; 75; 50; 37; 25; 20; 15; 10. 

 

2.2.3.4.2 Immobilisation of proteins on nitrocellulose membranes 

After SDS-PAGE, proteins were transferred from gels to a Protran nitrocellulose 

membrane (0.45 μm pore size; Whatman) using the following filter sandwich: 

Cathode – sponge / extra thick cellulose blot paper (Whatman) / SDS-PAGE gel / 

nitrocellulose membrane / extra thick cellulose blot paper / sponge – Anode 

This sandwich was assembled whilst totally immersed in transfer buffer (see 

section 2.1.4.3.2), secured in cassettes and placed in a Mini Trans-Blot electrophoretic 

transfer cell (Bio-Rad), and run at 100 V for 60 min or at 30 V for 16 h. Membranes 

containing transferred proteins were referred to as “blots”. Blots were incubated with 

Ponceau S solution (see section 2.1.4.3.2) for 1 to 2 min to determine the efficiency of 

protein transfer. Blots were then rinsed for 1 to 2 min with ultrapure water to destain.  
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2.2.3.4.3 Antibody probing of nitrocellulose membrane-bound proteins – 

immunoblot 

Blots were incubated in blocking buffer (see section 2.1.4.3.3) for 1 h at 20 °C to 

reduce non-specific antibody binding. Blots were then incubated with an appropriate 

dilution of primary antibody in blocking buffer for 1 h at 20 °C or for 16 h at 4 C. All 

primary antibodies that were used during the experiments are listed in Table 2.3. Blots 

were then washed (3 x 10 min) in TBS-Tween (see section 2.1.4.3.3) and an appropriate 

dilution of horseradish peroxidase-coupled secondary antibody in TBS-Tween was 

added for 1 h at 20 °C. Secondary antibodies were used depending on the species in 

which the primary antibody was raised (for details see Table 2.4). Following washing 

with TBS-Tween (3 x 10 min), immunoreactive species were visualised using enhanced 

chemiluminescence (ECL) development reagents (see section 2.1.4.3.3) and Hyperfilm-

ECL (GE Healthcare), a blue light sensitive autoradiography film, according to the 

manufacturer’s instructions. ECL protein signal visualisation is based on antibody 

bound horseradish peroxidase catalysed oxidation of luminol in the presence of 

hydrogen peroxide in alkaline conditions (Whitehead et al., 1979). Oxidised luminol is 

in an increased energy state and when luminol returns to ground state it emits the energy 

as light. In ECL detection the light output of luminol is enhanced by the presence of 

chemical enhancers (Whitehead et al., 1979). The light emission maximum of luminol is 

at 428 nm which is easily detectable by blue light sensitive autoradiography films. To 

visualise nitrocellulose membrane-bound proteins, detection solution A (luminol 

solution) and detection solution B (peroxide solution) were mixed in a 1:1 ratio in a 

final volume of 0.125 ml/cm
2
 nitrocellulose membrane and incubated with the blot for 2 

min at 20 ºC with continuous mixing. Following incubation, blots were placed in an X-

ray film cassette and Hyperfilm-ECL was placed on top of the membrane in a dark 
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room, and exposed for a time varying between 5 s and 1 hour. The Hyperfilm-ECL was 

developed using a Konica Minolta SRX-101A developer.  

 

2.2.3.4.4 Quantification of bands from immunoblots 

Developed films were scanned using an Epson Perfection V700 Photo scanner 

(Seiko Epson Corp.). Signals on films were background-corrected and quantified using 

ImageJ developed by Wayne Rasband (NIH, Bethesda, USA; http://rsb.info.nih.gov/ij/) 

(Abrámoff et al., 2004). Each of the background-corrected OD signals was compared to 

an OD calibration curve obtained from a calibrated OD step tablet (Kodak) to ensure 

that signals were obtained within the linear range of the film. Only the signals within the 

linear OD range were used for statistical analysis. In experiments involving the 

association of Miro1 with kinesin-1 and α-tubulin (shown in Figures 4.5 and 4.9), OD 

values of empty vector, VAPB and VAPBP56S transfected samples were normalised to 

OD values obtained from empty vector transfected cells. This normalisation resulted in 

a reference value of 1.0 for empty vector transfected samples. Kinesin-1 signals were 

then further normalised to Miro1 signals whereas α-tubulin signals were normalised to 

Miro1 or kinesin-1 signals. Statistical analysis was performed using Excel (Microsoft 

Corporation, Redmond, WA), and Prism software (GraphPad Software Inc., San Diego, 

CA).  

  



120 

 

2.2.4 Microscopy 

2.2.4.1 Immunofluorescence 

All steps of the procedure were performed at 20 ºC. Cells grown on glass 

coverslips were washed once with PBS (see section 2.1.1) to remove culture medium 

and incubated in fixing solution (see section 2.1.5.1) for 15 min. The cells were then 

washed twice with PBS and once with quenching solution (see section 2.1.5.1) to 

remove the fixing solution, and quenching solution was added for 15 min to quench 

unreacted formaldehyde and reduce autofluorescence. Following quenching the cells 

were washed once with PBS and permeabilised with permeabilisation solution (see 

section 2.1.5.1) for 3 min. Cells were then washed three times with blocking solution 

(see section 2.1.5.1) and incubated in blocking solution for 30 min to reduce non-

specific antibody binding. After blocking, the cells were incubated with an appropriate 

dilution of primary antibody in blocking solution for 1 hour. All primary antibodies that 

were used during the experiments are listed in Table 2.3. The cells were washed three 

times with blocking solution and incubated with an appropriate dilution of secondary 

antibody in blocking solution for 45 min. Fluorescently labelled secondary antibody 

were chosen depending on the species in which the primary antibody was raised and the 

fluorophore (for details see Table 2.4). Following incubation with the secondary 

antibody the cells were washed three times with blocking solution and once with PBS. 

Finally, coverslips were mounted onto slides using Mowiol-DABCO mounting medium 

(see section 2.1.5.1). Images were captured at the appropriate excitation wavelengths 

using Leica LAS AF software on a Leica DM5000 B microscope equipped with a Leica 

DFC360 FX camera and 20x/0.50NA, 40x/0.75NA or 63x/1.25NA HCX-PL-

FLUOTAR Leica objectives (all from Leica Microsystems CMS GmbH).  
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2.2.4.2 Time-lapse microscopy and image analysis 

2.2.4.2.1 Time-lapse microscopy 

Time-lapse microscopy of mitochondrial axonal transport was performed with an 

Axiovert S100 microscope (Zeiss) equipped with a Lambda LS Xenon-Arc light source 

(Sutter Instrument Company, Novato, CA), an enhanced green fluorescent protein 

(EGFP)/Discosoma sp. red fluorescent protein (DsRed) filterset (Chroma Technology 

Corp., Rockingham, VT), 40x EC Plan-Neofluar 1.3 N.A. objective (Zeiss), Lambda 

10-3 filter wheel (Sutter Instrument Co.) and a Photometrics Cascade-II 512B High 

Speed EMCCD camera (Photometrics, Tuscon, AZ). 36-48 h post-transfection, neurons 

on coverslips were transferred to a custom observation chamber (Dr Kurt De Vos, KCL, 

UK) (De Vos and Sheetz, 2007) mounted on the stage of the microscope. The cells were 

maintained at 37 °C using an objective heater (Tempcontrol 37-2, Zeiss) and ‘The Box’ 

and ‘The Cube’ Microscope Temperature Control System (Life Imaging Systems, 

Basel, Switzerland). Mitochondrial movements were recorded for 10 minutes with 100 

ms exposure time and 3 s time-lapse interval using Metamorph software (Molecular 

Devices). 

Axons in both cortical and motor neurons were easily identified in the cultures by 

morphological criteria being the longest process with sparse arborisation; many others 

studies have used such criteria (Ackerley et al., 2000; Nikolic et al., 1996; Roy et al., 

1998; Tradewell et al., 2011). In cortical neurons mitochondria were visualised by 

transfection with DsRed-Mito (Clontech). DsRed is a red fluorescent protein from 

Discosoma sp. (Matz et al., 1999). DsRed-Mito was created by fusion of DsRed and the 

mitochondrial targeting sequence from subunit VIII of human cytochrome c oxidase. In 

motor neurons mitochondria were visualised by labeling with MitoTracker Red 
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CMXRos (Invitrogen). MitoTracker Red CMXRos is a mitochondria selective red 

fluorescent dye derived from X-rosamine (Poot et al., 1996). It passively diffuses across 

the plasma membrane and accumulates in active mitochondria due to its cationic 

properties. MitoTracker Red CMXRos contains an alkylating chloromethyl moiety 

which can form a stabile covalent bond with free thiol groups in mitochondria (Poot et 

al., 1996). To visualise mitochondria for live cell imaging, motor neurons were 

incubated with 66 nM MitoTracker Red CMXRos in fresh motor neuron cell culture 

media for 3 min at 37 °C.  

 

2.2.4.2.2 Image analysis 

Image analysis was performed using ImageJ extended with custom plug-ins 

developed by Dr Kurt De Vos (KCL, UK), or Metamorph. Further calculations and 

statistical analysis were performed using Excel and Prism software. 

 

2.2.4.2.2.1 Analysis of overall mitochondrial transport 

Overall transport of mitochondria was quantified from kymographs which are 

representing movement obtained from time-lapse movies. On a kymograph the distance 

of movement is plotted along the x-axis and time along the y-axis. Kymographs were 

created using the Kymograph plugin of ImageJ (De Vos and Sheetz, 2007). Before 

converting the time-lapse movie to a kymograph, any bends in the imaged axon were 

straightened using the Straighten plugin of ImageJ (Kocsis et al., 1991).  

The overall transport of mitochondria in Figure 3.2, 3.3 and 4.10 was quantified 

from kymographs using the SlopeToVelocity plugin of ImageJ described previously (De 
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Vos and Sheetz, 2007). Briefly, this plugin calculates the overall velocity by measuring 

the distance between the position of individual mitochondria at the start and end of 

time-lapse recordings and dividing by the time elapsed. This yields an overall velocity 

of transport that includes anterograde and retrograde movements and stationary periods. 

Mitochondria were subsequently classified as motile (velocity > 0.1 m/s) or stationary 

(velocity ≤ 0.1 m/s). This threshold was empirically determined by Dr Kurt De Vos 

(De Vos et al., 2003). 

 

2.2.4.2.2.2 Full quantitative characterisation of mitochondrial transport 

All calculations of mitochondrial transport parameters were as described before 

(De Vos and Sheetz, 2007). For this analysis all positions of all mitochondria were 

determined at each time point in the time-lapse recordings using the Organel_Dynamics 

plugin of ImageJ developed by Dr Kurt De Vos (KCL, UK). From this positional 

information the frequency of movement, the duration of stationary periods between 

movements, the absolute velocity, and the persistence of unidirectional continuous 

movements were calculated. 

Movement events were defined using an absolute velocity threshold of 0.3 µm/s. 

This threshold was applied to exclude non microtubule-based mitochondrial transport 

from the calculations. The velocity of microtubule-based mitochondrial transport is 

higher 0.3 µm/s whereas the velocity of actin-based mitochondrial transport is below 

0.3 µm/s (Morris and Hollenbeck, 1995). Events with absolute velocity ≥ 0.3 µm/s were 

classified as motile and events with absolute velocity < 0.3 µm/s as stationary. 
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2.2.4.2.2.2.1 The frequency of movement 

The frequency of mitochondrial movement events was defined as the number of 

movement events per minute. The total frequency of movement (anterograde and 

retrograde movements combined) as well as the frequency of anterograde and of 

retrograde movement were calculated. To do so, the number of anterograde and 

retrograde movement events were tallied and divided by the recording time. The 

frequency of movement examines the transport activities underlying overall transport. 

 

2.2.4.2.2.2.2 The duration of stationary periods between movements 

The duration of stationary periods is defined as the length time mitochondria spent 

without moving between either anterograde or retrograde movements. To determine the 

duration of stationary periods in seconds, I tallied the number of time points a given 

mitochondria remained stationary after a movement. The duration was converted to 

seconds by multiplication by the time-lapse interval. The duration of stationary periods 

is a measure of the activity of the motors driving transport. 

 

2.2.4.2.2.2.3 Absolute velocity of movement 

The absolute velocity of movement was determined by measurement of the 

distance each mitochondrion has moved relative to its position at the previous time 

point and dividing this distance by the time-lapse interval. Only velocities ≥ 0.3 µm/s 

were included to exclude stationary periods and non-microtubule based mitochondrial 

transport.  
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In contrast to the overall velocity of movement determined from the kymographs, 

the absolute velocity is a parameter that describes a physical property of the molecular 

motor driving transport. 

 

2.2.4.2.2.2.4 The persistence of unidirectional continuous movements 

The persistence of unidirectional continuous movement is defined as the duration 

of a continuous movement in either anterograde or retrograde direction without pausing 

or reversal of direction. To calculate the persistence of anterograde and retrograde 

mitochondrial transport, the number of motile events that follow each other in one 

direction without pausing or reversals were tallied. Multiplication of this number by the 

time-lapse interval yielded the persistence of unidirectional movement in seconds. The 

persistence of movement measures the processivity of the molecular motors driving 

transport. 

 

2.2.4.3 Fura2 ratio imaging 

[Ca
2+

]c were measured using Fura2/AM (Fura2/acetoxymethyl ester; 

Calbiochem). Fura2/AM is a membrane-permeable form of the ratiometric Ca
2+

 

indicator Fura2. Upon entry into the cell endogenous esterases readily hydrolyse the 

acetoxymethyl ester moiety and generate membrane-impermeable Fura2. Fura2 is a 

polyamino carboxylic acid with properties similar to the Ca
2+

 chelator EGTA and 

BAPTA (1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid). Fura2 has 

excitation maxima at a wavelength of 340 and 380 nm and an emission maximum at 

510 nm. Upon binding of Ca
2+

 the excitation peak of Fura2 shifts from 380 to 340 nm. 
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The ratio of the fluorescent intensities at the two excitation wavelengths directly 

correlates to the intracellular Ca
2+

 concentration and is independent of total dye 

concentration or illumination intensity (Grynkiewicz et al., 1985). 

To measure [Ca
2+

]c, neurons were loaded with 5 M Fura2/AM in external 

solution (see section 2.1.5.2) for 20 min at 37 °C followed by washing in external 

solution for 20 min at 37 °C. Fura2 340 nm and 380 nm image pairs were recorded in 

time-lapse mode (100 ms exposure time, 1 s interval for 10 min) at 37 °C using 

MetaFluor software (Molecular Dynamics) on an Axiovert 200M microscope (Zeiss) 

equipped with a Polychrome V light source (Till Photonics), Fura2 filterset (Chroma 

Technology Corp.), 40x 1.3NA Fluar objective (Zeiss), Lambda 10-2 filter wheel 

(Sutter Instrument Co.) and a CoolSnap HQ2 camera (Photometrics, Tuscon, AZ). 

Neurons were kept at 37 °C on the microscope in a Ludin imaging chamber (Life 

Imaging Systems) using an objective heater (Tempcontrol 37, Zeiss) and ‘The Box’ and 

‘The Cube’ Microscope Temperature Control System. During experiments, neurons 

were perfused continuously with external solution (0.5 ml/min) using an Ismatec 

REGLO peristaltic pump (IDEX Corporation, Glattbrugg, Switzerland). To invoke 

transient Ca
2+

 influx, 50 mM KCl was applied in external solution (NaCl was replaced 

with equimolar amounts of KCl) (see section 2.1.5.2) for 2 min. The [Ca
2+

]c was 

calculated from the ratio of Fura2 fluorescent signals at excitation 340 and 380 nm and 

calibrated by sequential addition of saturating CaCl2 (20 mM) and EGTA (20mM) in 

external solution (see section 2.1.5.2) after incubation with 10 µM A23187 ionophore 

and then converted to nM using the Grynkiewicz formula (Grynkiewicz et al., 1985). 

Resting [Ca
2+

]c was determined as the average value between 60 and 180 s of 

recording; statistical analysis was performed using Prism software.  
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3 VAPBP56S DISRUPTS ANTEROGRADE 

AXONAL TRANSPORT OF MITOCHONDRIA 

3.1 Introduction 

Previous work from our laboratory showed that ALS mutant SOD1 selectively 

reduced anterograde axonal transport of mitochondria in transfected cortical neurons as 

well as in motor neurons from SOD1-G93A transgenic mice (De Vos et al., 2007). 

Since then several other groups have also reported damage to axonal transport of 

mitochondria by ALS mutant SOD1 (Bilsland et al., 2010; Magrané et al., 2012; 

Marinković et al., 2012). Mitochondria play a pivotal role in many cellular events 

including energy metabolism, fatty-acid oxidation, cellular signalling, lipid 

biosynthesis, Ca
2+

 handling, and apoptosis. They are therefore a critical axonal cargo 

because they supply the vast amount of ATP required to maintain ionic gradients for 

firing action potentials, mobilise vesicles for synaptic transmission and to support 

axonal transport itself.  

To enquire whether other genetic insults associated with ALS damage axonal 

transport of mitochondria, I quantified mitochondrial transport in the axons of living rat 

cortical neurons that were transfected with control vector, wild-type VAPB or ALS 

mutant VAPBP56S. In addition, I quantified mitochondrial axonal transport in motor 

neurons derived from VAPBP56S transgenic mice or their non-transgenic littermates. 

The bulk of the data was obtained from transfected rat cortical neurons and this was 

because of breeding problems with the wild-type VAPB expressing transgenic mice (Dr 

Elizabeth Tudor, KCL, UK; personal communication). Indeed, these lines have since 

been lost. 
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3.2 Results 

3.2.1 VAPBP56S selectively disrupts anterograde axonal 

transport of mitochondria in transfected cortical neurons 

To investigate any effect of VAPB and VAPBP56S on axonal transport of 

mitochondria, mitochondrial transport was first quantified through axons of living 

transfected rat cortical neurons by time-lapse microscopy using methods previously 

established in our laboratory (De Vos et al., 2007). EGFP-tagged VAPB (EGFP-VAPB) 

and EGFP-tagged VAPBP56S (EGFP-VAPBP56S) were used in this study because this 

allowed easy identification of transfected neurons, and also allowed an estimation of 

expression level of transfected proteins by monitoring the fluorescent signal intensity. 

The latter is important because excessive overexpression could cause artefacts.  

It has been shown that axonal transport is affected by neuronal outgrowth (Morris 

and Hollenbeck, 1993). Therefore the neurons used in this study were kept in culture for 

7 days before transfection as it has been shown that cortical neurons do not noticeably 

have axonal growth after 7 days in culture (Ackerley et al., 2000). Neurons were co-

transfected with DsRed-Mito (to visualise mitochondria) and either EGFP control 

vector, EGFP-VAPB or EGFP-VAPBP56S. Several groups have successfully utilised 

EGFP-tagging to study VAPB/VAPBP56S metabolism (Chen et al., 2010a; Gkogkas et 

al., 2008; Kanekura et al., 2006; Landers et al., 2008; Nishimura et al., 2004). All 

constructs readily expressed in the cortical neurons (Figure 3.1). EGFP and EGFP-

VAPB were observed throughout the cell body and in neurites, whereas EGFP-

VAPBP56S formed intracellular aggregates that were mostly restricted to the cell body 

and excluded from neurites (Figure 3.1). Others have described similar VAPBP56S 

aggregates in neurons and cell lines (De Vos et al., 2012; Fasana et al., 2010; Kanekura 

et al., 2006; Langou et al., 2010; Nishimura et al., 2004; Teuling et al., 2007).  
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Figure 3.1. EGFP-VAPBP56S forms aggregates in cortical neurons. 

(A) Cortical neurons were co-transfected with DsRed-Mito (red) and EGFP, EGFP-
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VAPB or EGFP-VAPBP56S (green) as indicated. EGFP and EGFP-VAPB were 

localised in both the cell body and neurites. In contrast, EGFP-VAPBP56S formed 

aggregates and localised mostly in the cell body. Representative images are shown. 

Scale bar: 50 µm. (B) Representative high power micrographs of the cell bodies of 

cortical neurons transfected with EGFP-VAPB or EGFP-VAPBP56S. Scale bar: 10 µm. 
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36 to 48 hours after transfection the neurons were transferred to the microscope 

and cells expressing low levels of transfected proteins (as judged by brightness of EGFP 

signal) were chosen for recording to avoid any possible artefacts produced by high-level 

expression (Ackerley et al., 2003; Vagnoni et al., 2011). Mitochondrial transport was 

recorded in a 100 to 200 µm section approximately in the middle of the axon with a 3 s 

time-lapse interval for 10 min.  

Mitochondrial transport was analysed from these recordings by creating 

kymographs and analysing overall transport of mitochondria. To do so, the distance 

between the position of individual mitochondria at the start and end of time-lapse 

recordings was calculated and divided by the time elapsed. This yielded an overall 

velocity for each mitochondrion that included both anterograde and retrograde 

movements and stationary periods. Mitochondria were classified as motile when their 

overall velocity exceeded 0.1 m/s or as stationary when their velocity was equal to or 

below 0.1 m/s. 

Quantification of the overall transport of mitochondria revealed that in the axon of 

EGFP control neurons, approximately 38% of mitochondria were motile with 

approximately 24% and 14% moving in anterograde and retrograde directions, 

respectively (Figure 3.2). These levels of motility are in agreement with previous 

studies of mitochondrial transport in cortical neurons (De Vos et al., 2007). Expression 

of EGFP-VAPB had no significant effect on mitochondrial transport compared to the 

EGFP control. However, expression of EGFP-VAPBP56S induced a significant 

decrease in total mitochondrial motility and this was due to a selective reduction in the 

number of anterograde moving mitochondria (Figure 3.2).  
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Figure 3.2. VAPBP56S disrupts anterograde axonal transport of mitochondria in 

transfected rat cortical neurons. 

Mitochondrial transport was recorded in neurons co-transfected with DsRed-Mito and 

EGFP (control; CTRL), EGFP-VAPB (VAPB) or EGFP-VAPBP56S (VAPBP56S) as 

indicated. (A) Representative kymographs show axonal transport of mitochondria in 

EGFP, EGFP-VAPB or EGFP-VAPBP56S transfected neurons. (B) The percentage of 

motile, anterograde and retrograde moving mitochondria are shown. Expression of 

EGFP-VAPB had no effect on mitochondrial transport. By contrast, EGFP-VAPBP56S 

reduced mitochondrial transport and this was due to a selective inhibition of anterograde 

but not retrograde transport. Statistical significance was determined by one-way 

ANOVA followed by Tukey’s post hoc test. N=11-14 cells from 3 different neuronal 

cell cultures for each transfection. Error bars are SEM ** p<0.01; *** p<0.001. 
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3.2.2 VAPBP56S selectively disrupts anterograde axonal 

transport of mitochondria in VAPBP56S transgenic motor 

neurons 

ALS is characterised by selective death of motor neurons. Thus to further 

investigate the possible relevance of the findings in transfected cortical neurons, I next 

quantified mitochondrial transport in embryonic motor neurons isolated from transgenic 

mice that express myc-tagged VAPBP56S (myc-VAPBP56S) in the central nervous 

system under control of the prion promoter. Myc-VAPBP56S forms aggregates in the 

cell body of motor neurons (Figure 3.3) that are similar to those I found in transfected 

cortical neurons (Figure 3.1) and those described by others (Langou et al., 2010; Tudor 

et al., 2010). Motor neurons isolated from non-transgenic littermates were used as 

controls. The VAPBP56S transgenic mice were generated in our laboratory and have 

been described previously (Tudor et al., 2010).  

Motor neuron mitochondria were visualised using the mitochondrial dye 

MitoTracker Red CMXRos and mitochondrial transport was imaged by time-lapse 

microscopy (3 s time interval, 10 min movies) as described previously (De Vos et al., 

2007). In non-transgenic motor neurons approximately 37% of mitochondria were 

motile and their anterograde and retrograde transport was balanced (approximately 18% 

anterograde and 19% retrograde) (Figure 3.4). Similar levels of mitochondrial transport 

have been observed in mouse motor neurons previously (De Vos et al., 2007). However, 

compared to the non-transgenic neurons, myc-VAPBP56S expressing motor neurons 

showed a significant reduction in the number of anterogradely moving mitochondria 

(Figure 3.4). The total number of motile mitochondria (retrograde + anterograde) did 

not change in VAPBP56S motor neurons because a slight, non-significant increase in 

retrograde transport compensated for the drop in anterograde mitochondria (Figure 3.4). 
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Figure 3.3 VAPBP56S forms aggregates in motor neurons. 

(A-B) Representative images of motor neurons derived from VAPBP56S 

transgenic mouse embryos. VAPBP56S was stained using an antibody against the myc-

tag. VAPBP56S forms punctate aggregates (arrows) in the cell body. Scale bar: 50 µm 

in A and 20 µm in B. 
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Figure 3.4. VAPBP56S disrupts anterograde axonal transport of mitochondria in 

transgenic mouse motor neurons. 

Mitochondria were visualised by MitoTracker Red CMXRos and mitochondrial 

transport was recorded in motor neurons isolated from VAPBP56S transgenic mouse 

embryos (VAPBP56S) or their non-transgenic littermates (Ntg) as indicated. (A) 

Representative kymographs show axonal transport of mitochondria in Ntg or 

VAPBP56S motor neurons. (B) The percentage of motile, anterograde and retrograde 

moving mitochondria are shown. VAPBP56S selectively reduced anterograde 

mitochondrial but not retrograde transport in motor neurons. Statistical significance was 

determined by t-test. N=5 Ntg cells from 3 different embryos and N=10 VAPBP56S 

cells from 5 different embryos. Error bars are SEM * p<0.05.  
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3.2.3 VAPBP56S decreases the frequency, velocity and 

persistence of anterograde mitochondrial movement 

To analyse the features underlying the anterograde axonal transport defect in 

VAPBP56S-expressing neurons, the positions of all mitochondria at each time point in 

the time-lapse recordings were tracked and from this positional information, the 

frequency of anterograde and retrograde movement events, the duration of stationary 

periods between movements, the absolute velocities of movement and the persistence of 

unidirectional continuous movements were calculated. The average number of 

mitochondria examined per cell were not significantly different between EGFP, EGFP-

VAPB and EGFP-VAPBP56S transfected cells (Figure 3.5). 

The overall (anterograde and retrograde combined), anterograde and retrograde 

frequencies of movement events were not significantly different (approximately 4-5 

events per mitochondria per minute) between control EGFP and EGFP-VAPB 

transfected neurons (Table 3.1 and Figure 3.5). In contrast, expression of EGFP-

VAPBP56S reduced the overall frequency of mitochondrial movement by 

approximately 50% and this was caused by a selective inhibition to anterograde but not 

retrograde transport activity (Table 3.1 and Figure 3.6). This reduction in the frequency 

of anterograde movement events in EGFP-VAPBP56S expressing cells was 

accompanied by changes in the amount of time that mitochondria spent pausing. The 

average time mitochondria spent pausing between movements was not significantly 

different in control EGFP and EGFP-VAPB transfected cells (45.95±98.07 s 

(mean±SD) and 58.77±129.90 s, respectively). However, in EGFP-VAPBP56S 

transfected neurons the amount of time mitochondria spent stationary was significantly 

increased (79.71±121.20 s) (Table 3.2 and Figure 3.7).  
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To further characterise the properties of the molecular motors driving transport, 

the duration of unidirectional, continuous movement (the persistence of movement) and 

the velocity of movement were determined. This revealed that compared to EGFP and 

EGFP-VAPB transfected neurons, EGFP-VAPBP56S significantly reduced the 

persistence and velocity of anterograde mitochondrial movement but did not affect the 

persistence or velocity of retrograde movement (Table 3.3 and 3.4, and Figure 3.8 and 

3.9). 

Thus, the disruption to anterograde mitochondrial transport induced by 

VAPBP56S is a consequence of reductions in the frequency, velocity and persistence of 

anterograde mitochondrial movements.  
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Figure 3.5 The average number of mitochondria examined per cell are not 

significantly different between transfections.  

The numbers of mitochondria were quantified in DsRed-Mito plus either EGFP 

(CTRL), EGFP-VAPB (VAPB) or EGFP-VAPBP56S (VAPBP56S) co-transfected 

cortical neurons. No significant differences were detected between the transfections. 

Statistical significance was determined by one-way ANOVA followed by Tukey’s post 

hoc test. N=11-14 cells from 3 different neuronal cell cultures for each transfection. 

Error bars are SEM. 
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Table 3.1 VAPBP56S decreases the frequency of anterograde mitochondrial movement events. 

 Motile Anterograde Retrograde 

Transfection Frequency (events/ 

mitochondria/min) 

SD p-value Frequency (events/ 

mitochondria/min) 

SD p-value Frequency (events/ 

mitochondria/min) 

SD p-value 

Ctrl 4.089 6.28  2.793 5.42  0.784 1.84  

VAPB 4.733 6.78 ns 3.234 6.11 ns 1.196 3.00 ns 

VAPBP56S 2.031 4.40 <0.001 0.726 2.64 <0.001 0.856 2.48 ns 

 

Frequencies of movement were quantified in DsRed-Mito plus either EGFP (Ctrl), EGFP-VAPB (VAPB) or EGFP-VAPBP56S 

(VAPBP56S) co-transfected cortical neurons. EGFP-VAPBP56S induced a significant decrease in the frequency of anterograde movements 

without affecting retrograde movement compared to control EGFP or EGFP-VAPB transfected neurons. Statistical significance was determined 

by one-way ANOVA (Kruskal-Wallis) followed by Dunn’s Multiple Comparison Test. N=11-14 cells from 3 different neuronal cell cultures for 

each transfection. ns, not significant.  

 



140 

 

 

Figure 3.6 VAPBP56S decreases the frequency of anterograde mitochondrial 

movement. 

Frequencies of movement were quantified in DsRed-Mito plus either EGFP 

(CTRL), EGFP-VAPB (VAPB) or EGFP-VAPBP56S (VAPBP56S) co-transfected 

cortical neurons. EGFP-VAPBP56S induced a significant decrease in the frequency of 

anterograde movements without affecting retrograde movement compared to control 

EGFP and EGFP-VAPB transfected neurons. Statistical significance was determined by 

one-way ANOVA (Kruskal-Wallis) followed by Dunn’s Multiple Comparison Test. 

N=11-14 cells from 3 different neuronal cell cultures for each transfection. Error bars 

are SEM *** p<0.001. 
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Table 3.2 VAPBP56S increases the duration of stationary periods between 

mitochondrial movements. 

Transfection Time (s) SD N (events) p-value 

Ctrl 45.95 98.07 2106  

VAPB 58.77 129.90 1805 ns 

VAPBP56S 79.71 151.20 753 <0.001  

 

The duration of stationary periods between movements was quantified for 

mitochondria in DsRed-Mito plus either EGFP (Ctrl), EGFP-VAPB (VAPB) or EGFP-

VAPBP56S (VAPBP56S) co-transfected cortical neurons. The duration of stationary 

periods between movements was significantly increased in EGFP-VAPBP56S 

transfected cells compared to control EGFP or EGFP-VAPB transfected neurons. 

Statistical significance was determined by one-way ANOVA (Kruskal-Wallis) followed 

by Dunn’s Multiple Comparison Test. N=11-14 cells from 3 different neuronal cell 

cultures for each transfection. ns, not significant.  
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Figure 3.7 VAPBP56S increases the duration of stationary periods between 

mitochondrial movements. 

The duration of stationary periods between movements was quantified for 

mitochondria in DsRed-Mito plus either EGFP (CTRL), EGFP-VAPB (VAPB) or 

EGFP-VAPBP56S (VAPBP56S) co-transfected cortical neurons. The duration of 

stationary periods between movements was significantly increased in EGFP-

VAPBP56S compared to control EGFP or EGFP-VAPB transfected neurons. Statistical 

significance was determined by one-way ANOVA (Kruskal-Wallis) followed by 

Dunn’s Multiple Comparison Test. N=11-14 cells from 3 different neuronal cell 

cultures for each transfection. Error bars are SEM *** p<0.001. 
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Table 3.3 VAPBP56S decreases the velocity of anterograde mitochondrial movement. 

 Anterograde Retrograde 

Transfection 

Velocity 

(µm/s) 

SD 

N 

(events) 

p-value 

Velocity 

(µm/s) 

SD 

N 

(events) 

p-

value 

Ctrl 0.78 0.37 5249  0.75 0.40 2592  

VAPB 0.80 0.39 4938 ns 0.77 0.41 2765 ns 

VAPBP56S 0.68 0.37 1157 <0.001 0.78 0.42 1255 ns 

 

Velocities were quantified in DsRed-Mito plus either EGFP (Ctrl), EGFP-VAPB 

(VAPB) or EGFP-VAPBP56S (VAPBP56S) co-transfected cortical neurons. EGFP-

VAPBP56S induced a significant decrease in anterograde but not retrograde velocities 

compared to control EGFP or EGFP-VAPB transfected neurons. Statistical significance 

was determined by one-way ANOVA (Kruskal-Wallis) followed by Dunn’s Multiple 

Comparison Test. N=11-14 cells from 3 different neuronal cell cultures for each 

transfection. ns, not significant.  
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Figure 3.8 VAPBP56S decreases the velocity of anterograde mitochondrial 

movement. 

Velocities were quantified in DsRed-Mito plus either EGFP (CTRL), EGFP-

VAPB (VAPB) or EGFP-VAPBP56S (VAPBP56S) co-transfected cortical neurons. 

EGFP-VAPBP56S induced a significant decrease of anterograde but not retrograde 

velocity compared to control EGFP or EGFP-VAPB transfected neurons. Statistical 

significance was determined by one-way ANOVA (Kruskal-Wallis) followed by 

Dunn’s Multiple Comparison Test. N=11-14 cells from 3 different neuronal cell 

cultures for each transfection. error bars are SEM *** p<0.001. 
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Table 3.4 VAPBP56S decreases the persistence of anterograde mitochondrial 

movement. 

 Anterograde Retrograde 

Transfection Time (s) SD 

N 

(events) 

p-

value 

Time (s) SD 

N 

(events) 

p-

value 

Ctrl 8.20 13.46 1928  5.50 5.88 1422  

VAPB 9.18 15.08 1624 ns 5.75 6.06 1456 ns 

VAPBP56S 5.96 10.04 563 <0.01 5.74 6.32 664 ns 

 

The persistence of continuous unidirectional movement was quantified in DsRed-

Mito plus either EGFP (Ctrl), EGFP-VAPB (VAPB) or EGFP-VAPBP56S 

(VAPBP56S) co-transfected cortical neurons. EGFP-VAPBP56S induced a significant 

decrease in the persistence of anterograde but not retrograde compared to control EGFP 

or EGFP-VAPB transfected neurons. Statistical significance was determined by one-

way ANOVA (Kruskal-Wallis) followed by Dunn’s Multiple Comparison Test. N=11-

14 cells from 3 different neuronal cell cultures for each transfectio. ns, not significant.  
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Figure 3.9 VAPBP56S decreases the persistence of anterograde mitochondrial 

movement. 

The persistence of continuous unidirectional movement was quantified in DsRed-

Mito plus either EGFP (CTRL), EGFP-VAPB (VAPB) or EGFP-VAPBP56S 

(VAPBP56S) co-transfected cortical neurons. EGFP-VAPBP56S induced a significant 

decrease in the persistence of anterograde but not retrograde movements compared to 

control EGFP or EGP-VAPB transfected neurons. Statistical significance was 

determined by one-way ANOVA (Kruskal-Wallis) followed by Dunn’s Multiple 

Comparison Test. N=11-14 cells from 3 different neuronal cell cultures for each 

transfection. Error bars are SEM ** p<0.01; *** p<0.001. 
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3.3 Discussion 

In this chapter, I investigated the effect of VAPB and ALS mutant VAPBP56S on 

axonal transport of mitochondria using time-lapse microscopy. I utilized two different 

experimental systems. The first involved cortical neurons transfected with EGFP control 

vector, EGFP-VAPB or EGFP-VAPBP56S. Here, mitochondria were visualized by co-

transfection with DsRed-Mito. The second system involved motor neurons that were 

prepared from VAPBP56S transgenic mice and their non-transgenic littermates (Tudor 

et al., 2010). Here mitochondria were visualized by use of MitoTracker Red CMXRos. 

The use of motor neurons is advantageous since these are the cell-types affected in 

ALS. However, only a limited number of experiments could be performed with these 

cells as there were breeding problems with the transgenic lines; no wild-type VAPB 

transgenics were available. Nevertheless, similar results were obtained with both 

systems. VAPBP56S but not VAPB induced selective damage to anterograde but not 

retrograde axonal transport of mitochondria. Moreover, this damage involved 

perturbation to the velocity, frequency and processivity of anterograde mitochondria 

movements. Interestingly, this anterograde-specific damage to mitochondrial transport 

is similar to that described by some other groups in mutant SOD1 expressing neurons 

(De Vos et al., 2007).  

Mitochondria are known to be a target for damage by ALS mutant SOD1 and as 

such it is not perhaps surprising that their axonal transport is perturbed by mutant SOD1 

(Ferri et al., 2006; Higgins et al., 2002; Liu et al., 2004; Mattiazzi et al., 2002; Pasinelli 

et al., 2004). Indeed, there is evidence that damage to mitochondria via other agents 

disrupts their anterograde axonal transport (Miller and Sheetz, 2004). However, VAPB 

is an integral ER protein (Amarilio et al., 2005; Fasana et al., 2010; Kanekura et al., 
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2006; Langou et al., 2010; Nishimura et al., 2004; Skehel et al., 2000; Soussan et al., 

1999; Teuling et al., 2007) and so an effect of VAPBP56S on mitochondrial transport 

was less easy to predict. In the course of this study, the outer mitochondrial membrane 

protein PTPIP51 was identified as a binding partner for VAPB and the VAPB-PTPIP51 

interaction regulates Ca
2+

 homeostasis (De Vos et al., 2012). Also, a secreted fragment 

of VAPB has recently been linked to mitochondrial localization in Drosophila and C. 

elegans muscle cells (Han et al., 2012). Thus, there are now known links between 

VAPB and mitochondria. These links are discussed in more detail in Chapter 5 and the 

effect of VAPB and VAPBP56S on cellular Ca
2+

 homeostasis and axonal transport of 

mitochondria is the focus of the next results chapter (Chapter 4). 

There are now powerful methods for analyzing mitochondrial transport in vivo 

using MitoMouse; this transgenic mouse expresses CFP in mitochondria (Misgeld et al., 

2007). Others have now exploited this mouse to analyse the effect of mutant SOD1 on 

mitochondrial transport in vivo (Bilsland et al., 2010; Marinković et al., 2012). Clearly, 

future studies using such approaches will be very valuable in confirming and extending 

the findings reported in this chapter. 

To summarise, the results described here show that a further mutant protein 

associated with FALS damages axonal transport. As such, they reinforce the role of 

defective axonal transport in the pathogenesis of ALS. 
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4 UNDERSTANDING THE MECHANISM 

UNDERLYING VAPBP56S-INDUCED 

DISRUPTION OF MITOCHONDRIAL 

TRANSPORT 

4.1 Introduction 

In Chapter 3, I demonstrated using time-lapse microscopy that expression of 

VAPBP56S but not wild-type VAPB decreased anterograde, but not retrograde axonal 

transport of mitochondria. Mutant SOD1 has also been shown to selectively perturb 

anterograde axonal transport of mitochondria in cultured neurons (De Vos et al., 2007). 

Thus, the transport phenotype induced by VAPBP56S is similar to that induced by 

mutant SOD1. 

The studies described in this chapter aimed to gain information on the mechanism 

by which VAPBP56S perturbs anterograde axonal transport of mitochondria. Since 

anterograde axonal transport of mitochondria involves kinesin-1 (Cai et al., 2005; 

Fransson et al., 2006; Glater et al., 2006; Hurd and Saxton, 1996; Pilling et al., 2006; 

Tanaka et al., 1998) it seems likely that VAPBP56S might somehow target kinesin-1 

driven transport of mitochondria. 

An established route whereby mitochondria attach to kinesin-1 involves Miro and 

TRAK (Brickley et al., 2005; Brickley and Stephenson, 2011; Fransson et al., 2006; 

Glater et al., 2006; Guo et al., 2005; MacAskill et al., 2009b; Saotome et al., 2008; 

Smith et al., 2006; Stowers et al., 2002; Wang and Schwarz, 2009). Elevation of [Ca
2+

]c 

disrupts anterograde axonal transport of mitochondria and this involves Miro which 

contains two EF-hand domains that bind Ca
2+

 and enable it to act as a Ca
2+

 sensor 
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(Chang et al., 2006; MacAskill et al., 2009b; Rintoul et al., 2003; Saotome et al., 2008; 

Wang and Schwarz, 2009; Yi et al., 2004). The precise mechanism by which increased 

[Ca
2+

]c halts anterograde mitochondrial transport is not clear. In one model, elevated 

[Ca
2+

]c induces release of Miro from kinesin-1 (MacAskill et al., 2009b); in another it 

enables Miro to bind to the motor domain of kinesin-1 so releasing kinesin-1 from its 

microtubule rails (Wang and Schwarz, 2009). Whatever the precise scenario, disruption 

to Ca
2+

 homeostasis is seen in ALS models (Grosskreutz et al., 2010; Langou et al., 

2010; Tradewell et al., 2011). 

Thus, the experiments I undertook were: 

1. To determine whether VAPBP56S alters the amounts of Miro1, TRAK1 or 

kinesin-1 that are associated with mitochondria. 

2. To determine whether VAPBP56S alters the amount of tubulin or kinesin-1 

associated with Miro1. 

3. To determine whether VAPBP56S alters tubulin acetylation since this 

influences binding of kinesin-1 to microtubules. 

4. To determine whether VAPBP56S affects resting [Ca
2+

]c in neurons and if so 

whether the transport defect can be rescued by expression of a Ca
2+

-insensitive mutant 

of Miro1. 

5. To determine whether VAPB and VAPBP56S are present in mitochondrial 

associated ER membranes (MAM) since these are involved in Ca
2+

 homeostasis. 

  



151 

 

4.1.1 Results 

4.1.2 VAPBP56S does not affect the interaction of Miro1, 

TRAK1 or kinesin-1 with mitochondria 

One way in which VAPBP56S could inhibit anterograde transport of 

mitochondria is by disruption of the attachment of the Miro1/TRAK1/kinesin-1 

complex to mitochondria. Therefore, I investigated whether expression of VAPB or 

VAPBP56S affected the amounts of Miro1, TRAK1 or kinesin-1 that are associated 

with mitochondria. To do so, HEK293 cells were co-transfected with either myc-tagged 

Miro1 (myc-Miro1), haemagglutinin-tagged TRAK1 (HA-TRAK1) or myc-tagged 

kinesin-1 (myc-kinesin-1) and either empty vector, VAPB or VAPBP56S. The 

Miro1/TRAK1/kinesin-1 complex is highly conserved in different organisms and cell 

types and others have also used HEK293 cells to dissect the mechanisms that control the 

association of Miro1 with kinesin-1 and tubulin (Wang and Schwarz, 2009). 

Mitochondria were purified and the amounts of myc-Miro1, HA-TRAK1 and myc-

kinesin-1 present in the purified mitochondria then determined by immunoblotting. 

Neither VAPB nor VAPBP56S altered the amounts of myc-Miro1, HA-TRAK1 or 

kinesin-1 that co-purified with mitochondria (Figures 4.1, 4.2 and 4.3). Thus expression 

of VAPB or VAPBP56S does not effect the amounts of Miro1, TRAK1 or kinesin-1 

associated with mitochondria. 
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Figure 4.1. VAPBP56S does not affect the association of Miro1 with mitochondria. 

HEK293 cells were transfected with empty vector (EV) alone or with myc-Miro1 

together with empty vector, VAPB or VAPBP56S. After fractionation, equal amounts 

of protein (5 µg) were separated on SDS-PAGE. The amount of myc-Miro1, 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and VAPB in the total cell lysate 

(Total), and myc-Miro1 and cytochrome c oxidase IV (COXIV) in the mitochondrial 

fraction (Mitochondria) were determined by immunoblotting. GAPDH and COXIV are 

a cytosolic and a mitochondrial marker, respectively, and were included to verify equal 

protein loading. The immunoblots shown are each representative of 3 independent 

experiments. 

  



153 

 

 
 

Figure 4.2. VAPBP56S does not affect the association of TRAK1 with mitochondria. 

HEK293 cells were transfected with empty vector (EV) alone or with HA-TRAK1 

together with empty vector, VAPB or VAPBP56S. After fractionation, equal amounts 

of protein (5 µg) were separated on SDS-PAGE. The amounts of HA-TRAK1, GAPDH 

and VAPB in the total cell lysate (Total), and HA-TRAK1 and COXIV in the 

mitochondrial fraction (Mitochondria) were determined by immunoblotting. The 

immunoblots shown are each representative of 3 independent experiments. 
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Figure 4.3. VAPBP56S does not affect the association of kinesin-1 to mitochondria. 

HEK293 cells were transfected with empty vector (EV) alone or with myc-kinesin-1 

together with empty vector, VAPB or VAPBP56S. After fractionation, equal amounts 

of protein (5 µg) were separated on SDS-PAGE. The amount of myc-kinesin-1, VAPB 

and GAPDH in the total cell lysate (Total), and myc-kinesin-1 and COXIV in the 

mitochondrial fraction (Mitochondria) were determined by immunoblotting. GAPDH is 

a cytosolic marker and COXIV is a mitochondrial marker. The immunoblots shown are 

each representative of 3 independent experiments. 
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4.1.3 VAPBP56S decreases the amount of tubulin but not 

kinesin-1 associated with Miro1 

Since VAPBP56S expression did not influence the binding of Miro1, TRAK1 and 

kinesin-1 to mitochondria it is possible that it instead influences the attachment of 

mitochondria with associated Miro1, TRAK1 and kinesin-1 with microtubules. To 

investigate this possibility, I monitored the effect of VAPB and VAPBP56S expression 

on the amounts of kinesin-1 and tubulin that were associated with Miro1 in 

immunoprecipitation experiments. Others have used similar immunoprecipitation assays 

to investigate how alterations to signalling pathways influence binding of kinesin-1 

motor complexes to tubulin and axonal transport of mitochondria (Stagi et al., 2006). 

Kinesin-1 binds to Miro1 directly or indirectly via TRAK (Fransson et al., 2006; 

Glater et al., 2006; MacAskill et al., 2009b; Wang and Schwarz, 2009). Thus before 

investigating VAPB and VAPBP56S, I first tested the effect of TRAK1 expression on 

the association of endogenous kinesin-1 to Miro1 in immunoprecipitation experiments. 

HEK293 cells were transfected with empty vector, empty vector plus myc-Miro1, 

empty vector plus HA-TRAK1 or myc-Miro1 plus HA-TRAK1. Myc-Miro1 was then 

immunoprecipitated from the samples using the myc-tag; non-immune IgG was used as 

a negative control. Endogenous kinesin-1 was detected in immunoprecipitates from 

myc-Miro1 transfected cells. However, a greater amount of kinesin-1 was present in 

immunoprecipitations from myc-Miro1 plus HA-TRAK1 transfected cells (Figure 4.4). 

Thus TRAK1 increases the amount of kinesin-1 associated with Miro1. I therefore 

monitored the effect of VAPB and VAPBP56S on the association of Miro1 with 

kinesin-1 and tubulin in HEK293 cells co-transfected with myc-Miro1, HA-TRAK1, 

and either control vector, VAPB or VAPBP56S in immunoprecipitation experiment. 
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HEK293 cells were co-transfected with myc-Miro1 and HA-TRAK1, and either 

control vector, VAPB or VAPBP56S. Myc-Miro1 was immunoprecipitated using the 

myc-tag and the amounts of endogenous kinesin-1 and α-tubulin in the immune pellet 

were determined by immunoblotting. Expression of VAPB or VAPBP56S did not alter 

the amounts of kinesin-1 that were associated with myc-Miro1 in these experiments 

(Figure 4.5) confirming my previous findings showing that expression of VAPB or 

VAPBP56S do not change the amount of kinesin-1 associated to mitochondria. Rather, 

expression of VAPBP56S but not VAPB reduced the amounts of tubulin associated 

with myc-Miro1 (Figure 4.5). This reduction was observed when the amounts of tubulin 

were normalised to the amounts of both immunoprecipitated Miro1 and co-

immunoprecipitated kinesin-1. The reduction in tubulin association with Miro1 was not 

due to an effect of VAPBP56S on TRAK1 because the levels of TRAK1 found in Miro1 

immunoprecipitates were unaffected by VAPBP56S (Figure 4.5). Thus, expression of 

VAPBP56S does not alter the amounts of kinesin-1 or TRAK1 that are associated with 

Miro1 but rather reduces the amount of tubulin that is associated with the 

Miro1/TRAK1/kinesin-1 complex. 
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Figure 4.4. TRAK1 modulates the amount of endogenous kinesin-1 associated with 

Miro1. 

HEK293 cells were transfected with either empty vector (EV), empty vector + Myc-

Miro1, empty vector + HA-TRAK1 or Myc-Miro1 + HA-TRAK1 as indicated. Miro1 

was immunoprecipitated using the myc-tag and the amount of bound kinesin-1 analysed 

on immunoblots. Samples of the input lysates (Input) and immunoprecipitates (IP: Myc-

Miro1) are shown. – indicates non-immune IgG and + indicates myc antibody in the 

immunoprecipitations. The immunoblots shown are each representative of 3 

independent experiments. 
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Figure 4.5. VAPBP56S reduces the amount of endogenous tubulin but not 

endogenous kinesin-1 associated with Miro1. 

(A) HEK293 cells were co-transfected with either empty vector (EV), empty vector + 

Myc-Miro1 + HA-TRAK1, VAPB + Myc-Miro1 + HA-TRAK1, or VAPBP56S + Myc-

Miro1 + HA-TRAK1 as indicated. Myc-Miro1 was immunoprecipitated using the myc-

tag and the amounts of co-immunoprecipitating kinesin-1 and -tubulin were detected 

by immunoblotting. Samples of the input lysates (Input) and immunoprecipitates (IP: 

Myc-Miro1) are shown. (B) Bar graphs show the relative levels of kinesin-1 and α-

tubulin in the immunoprecipitates. Kinesin-1 signals were normalised to 

immunoprecipitated myc-Miro1 signal; α-tubulin signals were normalised to both 

immunoprecipitated myc-Miro1 and immunoprecipitated kinesin-1 signals as indicated. 

Values were converted so that the empty vector + Myc-Miro1 + HA-TRAK1 sample 



159 

 

was assigned a reference value of 1.0. The results shown are from 4 independent 

transfections. Statistical significance was determined by one-way ANOVA followed by 

Tukey’s post hoc test. N=4; error bars are SEM * p<0.05; ** p<0.01.  
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4.1.4 VAPBP56S does not affect tubulin acetylation 

Posttranslational modifications have been shown to influence the interaction 

between microtubules and kinesin-1 (Ikegami et al., 2007; Liao and Gundersen, 1998; 

Reed et al., 2006). One of these modifications is the acetylation of Lys-40 in α-tubulin; 

Lys-40 is the major acetylation site of α-tubulin (Choudhary et al., 2009; Chu et al., 

2011; LeDizet and Piperno, 1987). Acetylation of α-tubulin promotes association of 

kinesin-1 to microtubules and enhances mitochondrial transport (Chen et al., 2010b; 

Dompierre et al., 2007; Reed et al., 2006). Thus, one way for VAPBP56S to reduce the 

association of microtubules with the mitochondrial motor complex 

Miro1/TRAK1/kinesin-1 is to reduce acetylation of α-tubulin. To investigate this 

possibility, I monitored the levels of acetylated α-tubulin in lysates from VAPB and 

VAPBP56S transfected cells by immunoblotting. To ensure specific detection of tubulin 

acetylation in transfected cells, I co-transfected the cells with mCherry-tagged α-tubulin 

(mCherry-α-tubulin). Since mCherry-α-tubulin migrates differently on SDS-PAGE 

compared to non-tagged endogenous α-tubulin, this construct allowed me to specifically 

assess the acetylation status of α-tubulin in transfected cells (Shaner et al., 2004). As a 

control for the specificity of the anti-acetylated α-tubulin antibody a mutant mCherry-α-

tubulin in which the lysine at position 40 was mutated to alanine and therefore cannot 

be acetylated (mCherry-α-tubulin
K40A

) (Dompierre et al., 2007) was included in these 

experiments. Neither myc-VAPB nor myc-VAPBP56S expression affected the levels of 

α-tubulin acetylation (Figure 4.6). Thus, the reduction in Miro1/TRAK1/kinesin-1 

motor complex-tubulin interaction in VAPBP56S-expressing cells was not caused by a 

reduction in α-tubulin acetylation.  
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Figure 4.6. VAPBP56S does not affect tubulin acetylation. 

HEK293 cells were transfected with either empty vector (EV), empty vector + 

mCherry-α-tubulin (mCherry-tubulin), empty vector + mCherry-α-tubulin
K40A

 

(mCherry-tubulinK40A), mCherry-α-tubulin + myc-VAPB (VAPB) or mCherry-α-

tubulin + myc-VAPBP56S (VAPBP56S) as indicated. Total cell lysates of cells were 

probed for α-tubulin and acetylated α-tubulin as shown. No differences were detected in 

the amount of acetylated α-tubulin in the presence of myc-VAPB or myc-VAPBP56S 

compared to EV + mCherry-tubulin; mCherry-tubulinK40A shows that the anti-

acetylated α-tubulin antibody is specifically recognising acetylated α-tubulin. The 

immunoblots shown are each representative of 3 independent experiments. 
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4.1.5 VAPBP56S increases resting [Ca
2+

]c 

Elevation of [Ca
2+

]c halts mitochondrial transport (Chang et al., 2006; MacAskill 

et al., 2009b; Rintoul et al., 2003; Saotome et al., 2008; Wang and Schwarz, 2009; Yi et 

al., 2004) and it has been shown that Ca
2+

 mediated disruption to mitochondrial 

transport can involve release of Miro/TRAK/kinesin-1, and consequently mitochondria 

from microtubules (Wang and Schwarz, 2009). Since VAPBP56S-induced disruption to 

mitochondrial transport involved a reduction in the amount of tubulin associated with 

the Miro1/TRAK1/kinesin-1 complex but not release of kinesin-1 from Miro1 it was 

possible that Ca
2+

 dependent release of Miro1/TRAK1/kinesin-1 from microtubules 

caused the defect in anterograde transport in VAPBP56S-expressing neurons. To test 

this hypothesis, I monitored the effect of VAPB and VAPBP56S expression on resting 

[Ca
2+

]c by Fura2 ratio imaging in rat cortical neurons transfected with EGFP control 

vector, EGFP-VAPB or EGFP-VAPBP56S.  

Fura2 is a ratiometric Ca
2+

 indicator dye that binds free intracellular Ca
2+

. Upon 

binding of Ca
2+

 the excitation peak of Fura2 shifts from 380 nm to 340 nm, and the ratio 

between recordings at 340 nm and 380 nm directly correlates with the amount of 

intracellular Ca
2+

. Furthermore, the ratio of Fura2 fluorescent signals at excitation 340 

and 380 nm can be calibrated and converted to nM using the Grynkiewicz formula 

(Grynkiewicz et al., 1985). To ensure that only viable cells were analysed in this assay, 

a transient Ca
2+

 influx was induced by depolarisation of the neurons with 50 mM KCl to 

mimic an action potential after recording resting [Ca
2+

]c (Lipscombe et al., 1988). Only 

cells that showed a transient increase in [Ca
2+

]c following the depolarisation were 

included in the analyses of resting [Ca
2+

]c. For each individual neuron the resting 

[Ca
2+

]c was calculated as the average value between 60 and 180 s of measurement. 
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Values for individual cells were averaged to yield the mean resting [Ca
2+

]c.  

The resting [Ca
2+

]c in EGFP-VAPB transfected neurons was 148.3±10.8 nM 

(mean±SEM) and this was not different significantly from resting [Ca
2+

]c in neurons 

transfected with control EGFP (143.7±11.3 nM) (Figure 4.7). These resting [Ca
2+

]c are 

well within the range observed by others in neurons (Huang et al., 2000; Sanelli et al., 

2004; Tiago et al., 2011). However, expression of EGFP-VAPBP56S significantly 

elevated resting [Ca
2+

]c to 207.1±18.9 nM (Figure 4.7). Thus the VAPBP56S induced 

disruption to anterograde axonal mitochondrial transport is associated with an increase 

in resting [Ca
2+

]c.  
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Figure 4.7. Expression of VAPBP56S increases resting [Ca
2+

]c in neurons. 

Rat cortical neurons were transfected with either control EGFP vector, EGFP-VAPB 

(VAPB) or EGFP-VAPBP56S (P56S) and [Ca
2+

]c determined by Fura2 ratio imaging. 

Resting [Ca
2+

]c was calculated for each individual neuron as the average resting [Ca
2+

]c 

between 60 and 180 s of measurement (indicated with a dashed line box in A). Values 

for individual cells were then collated to generate the bar graph in B. To ensure that 

resting [Ca
2+

]c was obtained from viable neurons a transient influx of Ca
2+

 was induced 

by application of 50 mM KCl to depolarise the neurons. Only cells that showed a 

transient increase in [Ca
2+

]c after depolarisation were included in the analysis of resting 

[Ca
2+

]c. Statistical significance was determined by one-way ANOVA (Kruskal-Wallis) 

followed by Dunn’s Multiple Comparison Test. N=10 (CTRL), 14 (VAPB), and 20 

(VAPBP56S) cells from 3 different neuronal cell cultures for each transfection. Error 

bars are SEM * p<0.05.  
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4.1.6 Expression of a Ca
2+

-insensitive mutant of Miro1 rescues 

the effect of VAPBP56S on the association of tubulin with 

Miro1 and the effect of VAPBP56S on mitochondrial 

transport 

VAPBP56S reduced the amount of tubulin associated with 

Miro1/TRAK1/kinesin-1 motor complex and increased resting [Ca
2+

]c. These results are 

consistent with a model in which VAPBP56S elevates [Ca
2+

]c to cause release of 

mitochondria with associated Miro1/TRAK1/kinesin-1 from microtubules to disrupt 

axonal transport (Wang and Schwarz, 2009). Since elevated [Ca
2+

]c disrupts kinesin-1 

based transport of mitochondria via an effect on the Miro1 EF-hand domains 

(MacAskill et al., 2009b; Saotome et al., 2008; Wang and Schwarz, 2009), I enquired 

whether expression of a mutant Miro1 in which the EF-hands were disrupted could 

rescue the effect of VAPBP56S on mitochondrial transport. This mutant Miro1 

(Miro1
E208K/E328K

) has essential glutamates in the EF-hands altered to lysine to inhibit 

binding of Ca
2+

 (Fransson et al., 2006).  

Mutant myc-tagged Miro1
E208K/E328K

 (myc-Miro1
E208K/E328K

) was prepared and its 

subcellular distribution first compared with that of wild-type myc-Miro1 in transfected 

cortical neurons and CV-1 cells. To do so, cells were transfected with DsRed-Mito (to 

visualise mitochondria) and either myc-Miro1 or myc-Miro1
E208K/E328K

. Both myc-

Miro1 and myc-Miro1
E208K/E328K

 localised to mitochondria (Figure 4.8).  
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Figure 4.8. Miro1
E208K/E328K

 co-localises with mitochondria in cortical neurons and 

CV-1 cells. 

Cortical neurons (A) or CV-1 cells (B) were co-transfected with DsRed-Mito (to 
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visualise mitochondria) and either myc-Miro1 or myc-Miro1
E208K/E328K

 (Myc-

Miro1KK). Myc-Miro1 and myc-Miro1
E208K/E328K

 were detected by immunostaining 

with anti-myc antibody. Both myc-Miro1 and myc-Miro1KK are co-localised with 

mitochondria. Representative images are shown. Scale bar 20 µm.  
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To test if the Ca
2+

 insensitive mutant Miro1
E208K/E328K

 could rescue the effect of 

VAPBP56S on the interaction of the Miro1/TRAK1/kinesin-1 complex with tubulin, I 

performed immunoprecipitation experiments. HEK293 cells were co-transfected with 

myc-Miro1
E208K/E328K

 plus HA-TRAK1 and either control vector, VAPB or VAPBP56S, 

and the amounts of endogenous kinesin-1 and tubulin associated with 

immunoprecipitated myc-Miro1
E208K/E328K

 were determined by immunoblotting. The 

amounts of co-immunoprecipitated HA-TRAK1, kinesin-1 and tubulin were not 

significantly different in any of these cells (Figure 4.9). Thus, whilst VAPBP56S 

reduces the amount of tubulin associated with wild-type Miro1, this effect is lost in cells 

expressing Miro1
E208K/E328K

.  
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Figure 4.9. Expression of Ca
2+

-insensitive Miro1
E208K/E328K

 rescues the effect of 

VAPBP56S on the association of tubulin with Miro1. 

(A) HEK293 cells were co-transfected with either empty vector (EV), empty vector + 

myc-Miro1
E208K/E328K

 (Myc-Miro1KK) + HA-TRAK1, VAPB + myc-Miro1
E208K/E328K

 + 

HA-TRAK1, or VAPBP56S + myc-Miro1
E208K/E328K

 + HA-TRAK1 as indicated. Myc-

Miro1
E208K/E328K

 was immunoprecipitated using the myc-tag and the amounts of co-

immunoprecipitating kinesin-1 and α-tubulin detected by immunoblotting. Samples of 

the input lysates (Input) and immunoprecipitates (IP: Myc-Miro1KK) are shown. (B) 

Bar graphs show relative levels of kinesin-1 and α-tubulin in the immunoprecipitates. 

Kinesin-1 signals were normalized to immunoprecipitated myc-Miro1
E208K/E328K

 signal; 

α-tubulin signals were normalized to both immunoprecipitated myc-Miro1
E208K/E328K
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and immunoprecipitated kinesin-1 signals as indicated. Values were converted to so that 

empty vector + myc-Miro1
E208K/E328K

 + HA-TRAK1 transfection was assigned a 

reference value of 1.0. Statistical significance was determined by one-way ANOVA 

followed by Tukey’s post hoc test. N=3 independent experiments. Error bars are SEM.  
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To determine whether Miro1
E208K/E328K

 could also rescue the effect of VAPBP56S 

on defective anterograde axonal transport of mitochondria, I co-transfected rat cortical 

neurons with DsRed-Mito and either EGFP-VAPB plus control vector, EGFP-

VAPBP56S plus control vector, EGFP-VAPBP56S plus Miro1 or EGFP-VAPBP56S 

plus Miro1
E208K/E328K

, and recorded axonal transport of mitochondria by time-lapse 

microscopy as previously described. Compared to EGFP-VAPB expressing neurons, 

EGFP-VAPBP56S again reduced anterograde mitochondrial transport and this was 

unaffected by expression of Miro1. However, co-expression of Miro1
E208K/E328K

 

significantly increased anterograde mitochondrial transport in the EGFP-VAPBP56S 

expressing cells (Figure 4.10). Thus, Miro1
E208K/E328K

 rescues defective axonal transport 

of mitochondria in EGFP-VAPBP56S expressing neurons.  
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Figure 4.10. VAPBP56S-induced defective anterograde mitochondrial transport is 

rescued by expression of Ca
2+

-insensitive Miro1
E208K/E328K

. 

Neurons were co-transfected with DsRed-Mito and either EGFP-VAPB, EGFP-

VAPBP56S, EGFP-VAPBP56S + Miro1 or EGFP-VAPBP56S + Miro1
E208K/E328K

. 

Transfections were balanced with empty vector so that all treatments received the same 

total amounts of DNA. (A) shows the proportion of anterograde moving mitochondria. 

Expression of EGFP-VAPBP56S (P56S) reduced anterograde mitochondrial transport 

and this was rescued by expression of Miro1
E208K/E328K

 (Miro1KK) but not wild-type 

Miro1. Statistical significance was determined by one-way ANOVA followed by 
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Tukey’s post hoc test. N=15-17 cells from 3 different neuronal cell cultures for each 

transfection. Error bars are SEM; * p<0.05, ** p<0.01; *** p<0.001; ns not significant. 

(B) shows representative kymographs of mitochondrial movement in neurons co-

transfected with EGFP-VAPB (VAPB), EGFP-VAPBP56S (VAPBP56S), EGFP-

VAPBP56S + Miro1 (VAPBP56S+Miro1) or EGFP-VAPBP56S + Miro1
E208K/E328K

 

(VAPBP56S+Miro1KK) as indicated.  
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4.1.7 VAPBP56S accumulates in mitochondria-associated ER 

membranes (MAM) 

Approximately 5-20% of the mitochondrial outer membrane is closely associated 

to ER (Rizzuto et al., 1998). These ER microdomains are termed MAM. MAM play an 

important role in Ca
2+

 homeostasis by facilitating Ca
2+

 exchange between ER and 

mitochondria (Csordás et al., 2006; Csordás et al., 2010; de Brito and Scorrano, 2008; 

Rusinol et al., 1994). VAPB is an ER protein and VAPBP56S disrupts ER (Fasana et 

al., 2010; Langou et al., 2010; Nishimura et al., 2004; Teuling et al., 2007; Tudor et al., 

2010). Therefore, one possibility is that the disruption to Ca
2+

 homeostasis induced by 

VAPBP56S is linked to ER-mitochondrial Ca
2+

 exchange. To begin to examine this 

possibility further, I enquired whether VAPB and VAPBP56S were MAM proteins. 

To do so, I first monitored the presence of VAPB in a biochemical fraction that 

contains both mitochondria and MAM but not ER from HEK293 cells that were 

transfected with empty vector, myc-VAPB or myc-VAPBP56S. Both myc-VAPB and 

myc-VAPBP56S were present in mitochondria plus MAM fraction but compared to 

myc-VAPB, myc-VAPBP56S levels were increased almost twofold (Figure 4.11). To 

investigate this further, I purified MAM, mitochondria free of MAM and the remaining 

non-MAM ER from HEK293 cells transfected with empty vector, myc-VAPB or myc-

VAPBP56S, and compared the levels of myc-VAPB and myc-VAPBP56S in these 

fractions. Compared to myc-VAPB, myc-VAPBP56S levels were elevated in MAM and 

correspondingly decreased in non-MAM ER; myc-VAPB and myc-VAPBP56S were 

not detected in pure mitochondria fraction (Figure 4.12). These changes were not due to 

altered fractionation properties of ER since the levels of protein disulphide isomerase 

(PDI), a general ER marker, were not altered in the MAM or non-MAM ER fractions 

(Figure 4.12). Thus, mutant VAPBP56S is enriched in MAM. 
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Figure 4.11. VAPB and VAPBP56S are present in a mitochondrial fraction 

associated with MAM, and VAPBP56S levels are elevated in this fraction. 

(A) HEK293 cells were transfected with empty vector (EV), myc-VAPB (VAPB) or 

myc-VAPBP56S (P56S) and mitochondria with associated MAM were isolated. The 

samples of total cell lysate (Total) and mitochondria with associated MAM 

(Mitochondria + MAM) were separated by SDS-PAGE, and probed for tubulin 

(cytosolic marker), COXIV (mitochondrial marker) and myc-VAPB/VAPBP56S using 

anti-myc antibody. (B) Bar graph shows relative amounts of myc-VAPB (VAPB) and 

myc-VAPBP56S (P56S) following densitometric quantification of signals. Statistical 

significance was determined by t-test. N=3 independent experiments; error bars are 

SEM; * p<0.05. 
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Figure 4.12. VAPBP56S is present at higher levels in MAM and lower level in non-

MAM ER fractions than VAPB. 

MAM, pure mitochondria (Mitochondria) and non-MAM ER (ER) were isolated from 

HEK293 cells transfected with empty vector (EV), myc-VAPB (VAPB) or myc-

VAPBP56S (P56S) as shown. Equal amounts of protein samples were separated by 

SDS-PAGE and probed on immunoblots for IP3R (MAM marker), PDI (ER marker), 

COXIV (mitochondrial marker), and myc-VAPB/VAPBP56S using anti-myc antibody. 

Samples of the total cell lysates (Total) are also shown with tubulin as a loading control. 

The immunoblots shown are representative of 3 independent experiments. 
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4.2 Discussion 

As described in Chapter 3, VAPBP56S selectively disrupts anterograde but not 

retrograde axonal transport of mitochondria. In this chapter, I aimed to identify possible 

mechanisms by which VAPBP56S might induce such disruption. There are a number of 

routes whereby VAPBP56S might selectively damage mitochondrial axonal transport. 

VAPBP56S might disrupt kinesin-1 function via some mechanism although this would 

be predicted to influence axonal transport of all kinesin-1 cargoes, not just 

mitochondria. More selective routes for damage to mitochondrial transport could 

involve VAPBP56S-induced disruption to the attachment of kinesin-1 to mitochondria. 

Alternatively, VAPBP56S might induce release of mitochondria with associated 

kinesin-1 from microtubule rails. 

Kinesin-1 attaches to mitochondria via Miro and TRAK, and Miro is a sensor for 

intracellular Ca
2+

; elevated Ca
2+

 disrupts mitochondria transport via an effect on Miro 

(Brickley et al., 2005; Brickley and Stephenson, 2011; Fransson et al., 2006; Glater et 

al., 2006; Guo et al., 2005; MacAskill et al., 2009a; MacAskill et al., 2009b; Saotome et 

al., 2008; Smith et al., 2006; Stowers et al., 2002; Wang and Schwarz, 2009). Using 

HEK293 cells, I investigated whether VAPBP56S influences the amounts of Miro1, 

TRAK1, kinesin-1 and tubulin that are associated with mitochondria. The 

Miro/TRAK/kinesin-1 complex is highly conserved and others have successfully 

utilized HEK293 cells to dissect the molecular mechanisms of mitochondrial transport 

(Wang and Schwarz, 2009). I obtained results to show that VAPBP56S but not VAPB 

reduces the amount of tubulin but not kinesin-1, Miro1 or TRAK1 that are associated 

with mitochondria. These results suggest that VAPBP56S causes release of 

mitochondria with associated Miro1, TRAK1 and kinesin-1 from microtubules.  
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As detailed above, tubulin acetylation is one of the known mechanisms for 

regulating attachment of kinesin-1 to microtubules. However, I detected no changes in 

tubulin acetylation in the presence of either VAPB or VAPBP56S in transfected cells. 

Alterations to tubulin acetylation thus appear not to be the cause of VAPBP56S-induced 

release of mitochondria with associated kinesin-1 from microtubules.  

Others have shown that elevated [Ca
2+

]c causes release of mitochondria with 

associated kinesin-1 from microtubules (Wang and Schwarz, 2009). During the course 

of this work, VAPB was shown to regulate Ca
2+ 

exchange between ER and 

mitochondria and VAPBP56S was defective in this process (De Vos et al., 2012). To 

test whether VAPBP56S disrupts Ca
2+ 

homeostasis, I measured [Ca
2+

]c by Fura2 ratio 

imaging. VAPBP56S elevated [Ca
2+

]c and others have obtained similar results (Langou 

et al., 2010). Furthermore, I was able to rescue the VAPBP56S induced transport defect 

by transfection of a Ca
2+

-insensitive mutant of Miro1. Together, these results support a 

scenario in which VAPBP56S elevates [Ca
2+

]c and this causes release of mitochondria-

associated kinesin-1 from microtubules via an effect on Miro1.  

All of these results were obtained from cell culture studies. In vivo data to support 

these results could involve the generation of Miro1 and Ca
2+

-insensitive mutant Miro1 

transgenic mice and crossing of such animals with MitoMouse (that expresses CFP 

labeled mitochondria) and VAPBP56S transgenic mice. This would enable monitoring 

of mitochondrial transport in vivo in the presence or absence of VAPBP56S.  

In addition, crossing of these mice with Miro1 or Ca
2+

-insensitive Miro1 

transgenics would permit in vivo testing of the effect of Miro1 on VAPBP56S-induced 

damage to mitochondrial transport. This in vivo approach could also be utilised to test 

the effect of Miro1 on mutant SOD1-induced damage to mitochondrial transport. 
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Neurological and pathological assays of these different transgenics might also reveal 

whether the Ca
2+

-insensitive Miro1 is protective against disease. 
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5 DISCUSSION 

5.1 Summary 

VAPBP56S causes some dominantly inherited familial forms of motor neuron 

disease including ALS type-8. In this thesis, I showed that VAPBP56S damages axonal 

transport of mitochondria in both VAPBP56S transfected rat cortical neurons and 

VAPBP56S transgenic mouse motor neurons. Disruption of mitochondrial transport was 

directional and involved perturbation of anterograde but not retrograde movement. 

VAPBP56S selectively decreased the frequency, velocity and persistence of anterograde 

mitochondrial movement.  

Next, I investigated the molecular mechanism underlying the VAPBP56S-

mediated perturbation of mitochondrial transport. VAPBP56S did not influence the 

interaction of Miro1, TRAK1 and kinesin-1 (the motor complex that drives anterograde 

mitochondrial transport) with mitochondria. However, I found that VAPBP56S reduced 

the amount of tubulin but not kinesin-1 that is associated with Miro1. Using Fura2 ratio 

imaging, I showed that VAPBP56S elevated resting [Ca
2+

]c in transfected rat cortical 

neurons. Elevation of [Ca
2+

]c perturbs kinesin-1-mediated mitochondrial transport via 

the outer mitochondrial membrane protein Miro1 which acts as a Ca
2+

 sensor 

(MacAskill et al., 2009b; Saotome et al., 2008; Wang and Schwarz, 2009). I 

demonstrated, that a Ca
2+

-insensitive mutant of Miro1 rescued defective mitochondrial 

transport in VAPBP56S expressing neurons. Finally, I showed that VAPB is located in 

MAM, an ER subdomain involved in Ca
2+

 homeostasis, and that VAPBP56S levels are 

higher than wild-type VAPB levels in MAM. Moreover, VAPB has recently been 

shown to interact with the outer mitochondrial membrane protein PTPIP51 and that this 

complex mediates Ca
2+

 exchange between ER and mitochondria (De Vos et al., 2012). 
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Damage to anterograde axonal transport of mitochondria by VAPBP56S may therefore 

involve disruption to MAM and ER-mitochondrial Ca
2+

 exchange and elevation of 

[Ca
2+

]c which in turn induces release of Miro1 with associated kinesin-1 from 

microtubules to halt anterograde mitochondrial transport.  

 

5.2 Disruption of mitochondrial transport in ALS 

Like VAPBP56S, ALS mutant SOD1 also selectively reduces anterograde but not 

retrograde mitochondrial transport; this phenotype is seen in rat embryonic cortical 

neurons transfected with several different ALS mutants of SOD1 and also in embryonic 

motor neurons from SOD1-G93A transgenic mice (De Vos et al., 2007). Thus, two 

different ALS-associated genetic insults cause similar mitochondrial transport defects. 

There is also evidence that anterograde axonal transport of mitochondria is also 

disrupted in human ALS cases. In particular, mitochondria accumulate in the cell body 

of anterior horn cells in the spinal cord of ALS patients (Sasaki and Iwata, 1996; Sasaki 

and Iwata, 2007) which is consistent with damage to anterograde mitochondrial 

transport. Defective mitochondrial transport may therefore be a common pathological 

event in both FALS and SALS.  

However, other studies have concluded that ALS mutant SOD1-G93A reduces 

both anterograde and retrograde transport of mitochondria (Bilsland et al., 2010; 

Marinković et al., 2012) and one study reported that SOD1-G93A impairs retrograde 

but not anterograde mitochondrial transport of mitochondria (Magrané et al., 2012). The 

reasons for these contrasting observations are not yet known but it is possible that they 

are caused, at least in part, by the different models used in these studies. De Vos and co-

workers have utilised mutant SOD1 transfected embryonic rat cortical neurons and 
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SOD1-G93A transgenic embryonic mouse motor neurons (De Vos et al., 2007) whereas 

Magrané and co-workers have used embryonic motor neurons derived from SOD1-

G93A transgenic rats (Magrané et al., 2012). Therefore, it is possible that differences 

between animal models may cause differences in the directionality of the transport 

defect.  

Bilsland and co-workers have investigated mitochondrial transport in vivo in 

SOD1-G93A mice (Bilsland et al., 2010) and Marinković and co-workers used 

explanted motor neurons from SOD1-G93A and SOD1-G85R mice (Marinković et al., 

2012). In SOD1-G93A mice, both groups described perturbation of both anterograde 

and retrograde mitochondrial transport before the first clinical signs of the disease at 

postnatal day 36 (Bilsland et al., 2010) or at postnatal day 40 (Marinković et al., 2012). 

However, Marinković et al. have found that the retrograde mitochondrial transport 

defect has a later onset compared to the anterograde defect (Marinković et al., 2012). 

The anterograde transport defect appears at postnatal day 20 whereas the retrograde 

transport defect is not observable until several days later from postnatal day 40 onward 

(Marinković et al., 2012). These findings suggest that the mitochondrial transport defect 

may develop gradually in SOD1-G93A transgenic mice; anterograde transport is 

perturbed first and can be observed as early as the embryonic stage (De Vos et al., 

2007). This is followed by a retrograde transport defect that is observed from postnatal 

day 36 (Bilsland et al., 2010; Marinković et al., 2012).  

It has also been reported that wild-type SOD1 overexpressing transgenic mice but 

not ALS mutant SOD1-G85R transgenic mice that develop motor neuron disease have a 

mitochondrial transport defect (Marinković et al., 2012). These findings have queried 

the role of defective axonal transport in ALS (Marinković et al., 2012). However, 

several other groups have obtained different results and have shown that wild-type 
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SOD1 does not affect axonal transport and that SOD1-G85R does perturb transport like 

SOD1-G93A (De Vos et al., 2007; Williamson and Cleveland, 1999). The onset of the 

transport defect is remarkably late in wild-type SOD1 overexpressing mice compared to 

SOD1-G93A mice (postnatal day 60 vs. postnatal day 10) respectively (Marinković et 

al., 2012). It has been reported that some wild-type SOD1 overexpressing mice exhibit 

signs of premature aging (Avraham et al., 1988; Avraham et al., 1991; Ceballos-Picot et 

al., 1991) thus it is possible that the late transport defect in wild-type SOD1 

overexpressing mice observed by Marinković and co-workers is linked to ageing 

(Marinković et al., 2012). To answer this question and to better understand the mutant 

SOD1 induced mitochondrial transport defect further research is needed. 

 

5.3 VAPBP56S induced damage to mitochondrial transport is 

linked to elevated [Ca
2+

]c and release of mitochondria 

with associated kinesin-1 from microtubules 

It has been demonstrated that mitochondrial movement is arrested following an 

increase of [Ca
2+

]c in H9c2 cardiac myoblast cells (Saotome et al., 2008; Yi et al., 

2004) and in dendrites and axons of cultured cortical and hippocampal neurons (Chang 

et al., 2006; MacAskill et al., 2009b; Rintoul et al., 2003; Wang and Schwarz, 2009). 

Mitochondrial halting caused by elevated [Ca
2+

]c is reversible and does not show 

desensitisation following repeated stimulation in both H9c2 myoblasts and hippocampal 

neurons (MacAskill et al., 2009b; Yi et al., 2004). I showed in this thesis that 

VAPBP56S significantly elevates resting [Ca
2+

]c in transfected rat cortical neurons and 

this was associated with perturbed mitochondrial transport. I also found that the 

VAPBP56S-induced damage to mitochondrial transport could be rescued with a Ca
2+

-
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insensitive mutant of Miro1. These results support the notion that VAPBP56S induced 

damage to mitochondrial transport involves elevated [Ca
2+

]c. During the course of this 

work, others also showed that VAPBP56S increases [Ca
2+

]c (Langou et al., 2010).  

Three independent studies have shown that the Miro EF-hand domains mediate 

Ca
2+

 dependent regulation of mitochondrial trafficking (MacAskill et al., 2009b; 

Saotome et al., 2008; Wang and Schwarz, 2009) and two possible mechanisms have 

been proposed to explain Ca
2+

 dependent regulation of mitochondrial transport 

(MacAskill et al., 2009b; Wang and Schwarz, 2009). Wang and Schwarz developed a 

model in which kinesin-1 binds to TRAK which in turn binds to Miro. Increased [Ca
2+

]c 

causes a conformational change in Miro that enables the N-terminal motor domain of 

kinesin-1 to directly interact with Miro. Thus, the kinesin-1 motor domain is prevented 

from binding to and move along microtubules, effectively halting transport (Figure 5.1) 

(Wang and Schwarz, 2009). In contrast, MacAskill et al. proposed that kinesin-1 

directly binds to Miro independently of TRAK and that increased [Ca
2+

]c disrupts this 

interaction, thus releasing mitochondria from kinesin-1 to inhibit mitochondrial 

transport (Figure 5.1) (MacAskill et al., 2009b). My findings are in line with the model 

proposed by Wang and Schwarz (Wang and Schwarz, 2009). I found that elevation of 

TRAK1 expression levels increased the amount of endogenous kinesin-1 bound to 

Miro1, suggesting that TRAK1 plays a significant role in this interaction. I also 

demonstrated that VAPBP56S reduced the amount of tubulin but not kinesin-1 that was 

associated with Miro1 in HEK293 cells. Moreover, this defect was rescued using a Ca
2+

 

insensitive mutant Miro1 construct. My data therefore support a mechanism in which 

ALS-associated mutant VAPBP56S perturbs anterograde axonal transport of 

mitochondria by disrupting Ca
2+

 homeostasis and affecting the Miro1/TRAK1/kinesin-1 

interaction with tubulin (Figure 5.1).  
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Figure 5.1 Models of Miro and Ca
2+

dependent regulation of mitochondrial transport, 

and proposed mechanism for how VAPBP56S disrupts mitochondrial transport. 

 

(A) Ca
2+

 induced release of kinesin-1 from microtubules. Kinesin-1 is associated with 
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Miro via interaction with TRAK. Miro is a sensor for intracellular Ca
2+

 via it EF-hands. 

Increased Ca
2+

 alters the structure of the Miro EF-hands to permit binding of the 

kinesin-1 motor domain. Since kinesin-1 is no longer attached to microtubule rails, 

mitochondrial transport is halted (Wang and Schwarz, 2009). (B) Increased Ca
2+

 alters 

the structure of the Miro EF-hands to induce release of Miro and TRAK from kinesin-1 

to halt mitochondrial transport (MacAskill et al., 2009b). (C) Proposed mechanism for 

how VAPBP56S disrupts mitochondrial transport. VAPB is an ER membrane protein 

localised to MAM and tethers ER to mitochondria via its interaction with PTPIP51. 

VAPBP56S disrupts binding to PTPIP51 and perturbs ER-mitochondria Ca
2+

 exchange 

(De Vos et al., 2012). This perturbation of Ca
2+

 handling leads to increased [Ca
2+

]c 

which in turn disrupts the association of mitochondrial kinesin-1 with microtubules and 

axonal transport via an effect on Miro1. 
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5.4 VAPBP56S and Ca
2+

 mishandling 

As described above, the VAPBP56S-induced defect in anterograde transport of 

mitochondria is Ca
2+

 dependent and correlates with increased [Ca
2+

]c. How VAPBP56S 

causes this increase in [Ca
2+

]c is not yet clear but may well involve its effect on ER 

structure (Fasana et al., 2010; Langou et al., 2010; Nishimura et al., 2004; Teuling et al., 

2007; Tudor et al., 2010), its interaction with the outer mitochondrial membrane protein 

PTPIP51 (De Vos et al., 2012) or its role in ER stress and the UPR (Gkogkas et al., 

2008; Kanekura et al., 2006; Langou et al., 2010; Suzuki et al., 2009; Tsuda et al., 

2008).  

 

5.4.1 Perturbation of ER structure 

The ER is a major Ca
2+

 store and overexpression of VAPBP56S induces the 

formation of large abnormal ER-derived inclusions (Fasana et al., 2010; Langou et al., 

2010; Nishimura et al., 2004; Teuling et al., 2007; Tudor et al., 2010). Hence it is 

possible that this structural effect to ER directly affects Ca
2+

 handing by the ER and 

leads to a permanent increase in [Ca
2+

]c. However, it has been recently reported that 

induced pluripotent stem cells derived from VAPBP56S ALS patients do not show large 

ER aggregates (Mitne-Neto et al., 2011). 

 

5.4.2 Perturbation of MAM 

In addition to ER, mitochondria are important Ca
2+

 stores and Ca
2+

 exchange 

between these organelles impacts upon a number of physiological processes such as 
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oxidative ATP synthesis, protein folding and apoptotic cell death (Hayashi et al., 2009; 

Simmen et al., 2010). VAPB interacts with the outer mitochondrial membrane protein 

PTPIP51 to regulate Ca
2+

 homeostasis (De Vos et al., 2012). Indeed, depleting VAPB or 

PTPIP51 levels using small interfering RNA caused an increase in peak [Ca
2+

]c 

following IP3R-mediated Ca
2+

 release from ER stores that was associated with delayed 

mitochondrial Ca
2+

 uptake and reduced peak mitochondrial Ca
2+

 levels (De Vos et al., 

2012). Moreover, I have shown that a proportion of VAPB is present in MAM and that 

VAPBP56S is enriched in MAM compared to wild-type VAPB. Furthermore, 

VAPBP56S aberrantly increases mitochondrial Ca
2+

 uptake upon IP3R-mediated release 

of Ca
2+

 from ER stores in both HEK293 cells and rat cortical neurons (De Vos et al., 

2012). Both the accumulation in MAM and the disruption of Ca
2+

 handling are most 

likely caused by increased binding of VAPBP56S to PTPIP51 (De Vos et al., 2012). In 

terms of axonal transport regulation, such an increase in mitochondrial Ca
2+

 uptake 

could possibly lead to mitochondrial Ca
2+

 overload and saturated mitochondrial Ca
2+

 

buffering which can cause a permanently increased [Ca
2+

]c (Grosskreutz et al., 2007).  

 

5.4.3 ER stress 

VAPB is involved in ER stress and the UPR and there is evidence that 

VAPBP56S is defective in this function (Gkogkas et al., 2008; Kanekura et al., 2006; 

Langou et al., 2010; Suzuki et al., 2009; Tsuda et al., 2008). It has been shown that 

under conditions of ER stress CHOP activates ER oxidase 1 α (ERO1-α), which induces 

IP3R-mediated Ca
2+

 release from the ER (Li et al., 2009; Marciniak et al., 2004). 

VAPBP56S induced perturbation of the UPR may therefore impact on this process and 

could induce increased [Ca
2+

]c and thus defective axonal mitochondrial transport.  
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5.5 Implications for other forms of ALS 

I showed in this thesis that VAPBP56S increases [Ca
2+

]c and selectively disrupts 

anterograde mitochondrial transport in a Ca
2+

 dependent manner. A very similar defect 

in anterograde axonal transport of mitochondria has been observed previously in mutant 

SOD1 models (De Vos et al., 2007). We do not yet know if the same mechanism is 

causing the inhibition of axonal transport by ALS mutant SOD1, but [Ca
2+

]c is elevated 

in mutant SOD1 cellular models (Carrì et al., 1997; Jaiswal et al., 2009; Swerdlow et 

al., 1998), in motor neurons from mutant SOD1 transgenic ALS models (Kruman et al., 

1999; Siklós et al., 2000; Tradewell et al., 2011) and ALS patients (Curti et al., 1996; 

Siklós et al., 1996).  

Although there is no evidence that mutant SOD1 affects ER-mitochondria 

interactions, mutant SOD1 has been shown to directly bind to VDAC1 (Israelson et al., 

2010). VDAC1 is a mitochondrial protein but it is linked to some ER proteins in MAM 

(Szabadkai et al., 2006). Moreover, mutant SOD1 abnormally localises to mitochondrial 

intermembrane space and decreases the Ca
2+

 accumulation and retention capacity of 

mitochondria (Igoudjil et al., 2011). Furthermore, ER stress and activation of the UPR 

are early phenomenona in mutant SOD1 expressing transgenic mice and cell lines 

(Atkin et al., 2006; Kikuchi et al., 2006; Nishitoh et al., 2008; Saxena et al., 2009; 

Tobisawa et al., 2003), and so may also influence Ca
2+

 homeostasis.  

Evidence for the involvement of defective axonal transport caused by increased 

[Ca
2+

]c in other forms of ALS is less extensive, but mitochondrial clustering has been 

described in mutant TDP-43 mice (Xu et al., 2011b) and in the spinal cord of ALS 

patients (Sasaki and Iwata, 1996; Sasaki and Iwata, 2007). Altered Ca
2+

 handling and 

UPR have been linked to ALS caused by mutations in ubiquilin 2 (Deng et al., 2011), 
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VCP (Ju et al., 2009; Ju et al., 2008; Ritz et al., 2011; Weihl et al., 2006), and Sigma-1 

receptor (Sig-1R) (Al-Saif et al., 2011). Sig-1R is particularly interesting in this context 

because it is a Ca
2+

 sensitive chaperone of IP3R in the ER that is localised in MAM 

(Hayashi and Su, 2007). Thus in addition to VAPB, Sig-1R is a second ER-resident 

MAM protein directly involved in ALS.  

 

5.6 Future directions 

The results described in this thesis provide novel information on how VAPBP56S 

may cause ALS. At the same time, the results presented here raise further questions and 

these, and possible future lines of research are discussed below.  

 

i) An important finding in this thesis is that VAPBP56S increased resting [Ca
2+

]c. 

However, the source of increased [Ca
2+

]c and the exact mechanism of this increase are 

not known. To determine which organelle is the source of the increased [Ca
2+

]c, Ca
2+

 

levels could be measured in VAPBP56S and control transfected cells in both the ER and 

mitochondria using Ca
2+

 indicators targeted to mitochondria or ER (e.g. pericam-mito 

or aequorin ER). 

ii) VAPBT46I shows similar pathological features as VAPBP56S (Chen et al., 

2010a). Therefore, it is possible that these two mutants of VAPB cause ALS by similar 

mechanisms. This could be tested by monitoring axonal transport of mitochondria and 

[Ca
2+

]c in VAPBT46I transfected cells.  

iii) Mutant SOD1 has been shown to perturb both mitochondrial and vesicle 

transport (Bilsland et al., 2010; De Vos et al., 2007; Marinković et al., 2012). I 
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demonstrated in this thesis that VAPBP56S perturbs mitochondrial transport. It would 

be interesting to investigate if VAPBP56S also affects axonal transport of other non-

mitochondrial cargoes similar to mutant SOD1. Since mitochondria provide ATP for 

molecular motor proteins (kinesins and dynein) and Ca
2+

 can influence the transport of 

other cargoes, it is possible that axonal transport of other non-mitochondrial cargoes is 

also affected in VAPBP56S transfected cells. The effect of VAPBP56S on axonal 

transport of non-mitochondrial cargoes could be investigated by using EGFP-tagged 

cargoes and time-lapse microscopy.  

iv) Elevated Ca
2+

 levels and disrupted mitochondrial transport have also been 

observed in mutant SOD1 expressing cells (Carrì et al., 1997; De Vos et al., 2007; 

Jaiswal et al., 2009; Kruman et al., 1999; Siklós et al., 2000; Swerdlow et al., 1998; 

Tradewell et al., 2011). Thus it would be interesting to investigate whether defective 

mitochondrial transport caused by mutant SOD1 can also be rescued by expression of 

the Ca
2+

-insensitive mutant of Miro.  

v) Mutant SOD1 has been shown to bind to VDAC1 (Israelson et al., 2010). Thus 

it is possible that mutant SOD1 is also associated with PTPIP51 and via this interaction 

perturbs MAM, and disrupts Ca
2+

 homeostasis. To begin to investigate this possibility, 

immunoprecipitation experiments could be performed to monitor SOD1-PTPIP51 

interactions. 

vi) Mutations in presenilin-1 and 2 and in α-synuclein cause Alzheimer’s disease 

and Parkinson’s disease respectively (Polymeropoulos et al., 1997; Sherrington et al., 

1995). It has been shown that presenilin-1 and 2 are enriched in MAM (Area-Gomez et 

al., 2009). Moreover, overexpression of α-synuclein increases ER-mitochondria 

interaction (Cali et al., 2012). Damage to mitochondrial axonal transport is seen in both 
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Alzheimer’s and Parkinson’s diseases (De Vos et al., 2008). Thus, ER-mitochondria 

interactions and MAM may be target for damage in other neurodegenerative diseases. 

Future work in this area is thus warranted. 
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